Biological Variation as a Threshold Concept: Can We Measure Threshold Crossing?

Author:

Walck-Shannon Elise1,Batzli Janet2,Pultorak Josh3,Boehmer Hailey2

Affiliation:

1. Center for Integrative Research on Cognition, Learning, and Education (CIRCLE) and Department of Biology, Washington University in St. Louis, St. Louis, MO 63130

2. Biology Core Curriculum (Biocore), University of Wisconsin–Madison, Madison, WI 53706

3. Wisconsin Institute for Discovery and Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53706

Abstract

Threshold concepts are fundamental to a discipline and, once understood, transform students’ understanding and perception of the subject. Despite the value of threshold concepts as a learning “portal” for heuristic purposes, there is limited empirical evidence of threshold crossing or achieving mastery. As a threshold concept, biological variation within species is fundamental to understanding evolution and provides a target for analyzing threshold crossing. We aimed to 1) examine student understanding of variation using four dimensions of a threshold concept (discursive, troublesome, liminal, and integrative), 2) measure “threshold crossing,” and 3) investigate the utility of the threshold concept framework to curriculum design. We conducted semistructured interviews of 29 students affiliated with a “variation-enriched” curriculum in a cross-sectional design with precurriculum, current, and postcurriculum groups (Pre, Current, and Post) and an outgroup of three postbaccalaureate advanced learners (Outgroup). Interview transcripts revealed that Current students expand their “variation discourse,” while the Post group and Outgroup displayed conformity in word choice about variation. The Post and Current groups displayed less troublesome and more integrative responses. Pre, Post, and Outgroup explanations’ revealed liminality, with discomfort and uncertainty regardless of accuracy. When we combined all four threshold concept dimensions for each respondent, patterns indicative of threshold crossing emerged along with new insight regarding curricular design.

Publisher

American Society for Cell Biology (ASCB)

Subject

General Biochemistry, Genetics and Molecular Biology,Education

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3