Optimizing Learning of Scientific Category Knowledge in the Classroom: The Case of Plant Identification

Author:

Kirchoff Bruce K.1,Delaney Peter F.2,Horton Meg3,Dellinger-Johnston Rebecca1

Affiliation:

1. *Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170

2. Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170

3. Grogan College, University of North Carolina at Greensboro, Greensboro, NC 27402-6170

Abstract

Learning to identify organisms is extraordinarily difficult, yet trained field biologists can quickly and easily identify organisms at a glance. They do this without recourse to the use of traditional characters or identification devices. Achieving this type of recognition accuracy is a goal of many courses in plant systematics. Teaching plant identification is difficult because of variability in the plants’ appearance, the difficulty of bringing them into the classroom, and the difficulty of taking students into the field. To solve these problems, we developed and tested a cognitive psychology–based computer program to teach plant identification. The program incorporates presentation of plant images in a homework-based, active-learning format that was developed to stimulate expert-level visual recognition. A controlled experimental test using a within-subject design was performed against traditional study methods in the context of a college course in plant systematics. Use of the program resulted in an 8–25% statistically significant improvement in final exam scores, depending on the type of identification question used (living plants, photographs, written descriptions). The software demonstrates how the use of routines to train perceptual expertise, interleaved examples, spaced repetition, and retrieval practice can be used to train identification of complex and highly variable objects.

Publisher

American Society for Cell Biology (ASCB)

Subject

General Biochemistry, Genetics and Molecular Biology,Education

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3