The Design and Demonstrative Analysis of the Gas Turbine Operation’s Simulator

Author:

Abhulimen Abel Edeowede1

Affiliation:

1. National Power Training Institute Of Nigeria, (Naptin).

Abstract

The Gas Turbine operation was investigated with a view to evolving a system designed to provide a realistic imitation of the controls and operation of a Gas Turbine, used for training purposes. Operator Training Simulator has been widely adopted by many industries being a computer simulation which attempts to model a real-life plant so that it can be studied. A well trained and skilled operator is key in increasing power plant safety and productivity. Therefore, enabling quality training for operators is becoming more important as they need to handle increased load of information and duties whereas the lack of training is a major reason for inadequate performance. By changing variables in the simulator, predictions are made about the behaviour of the engine. It is a tool to virtually investigate the behaviour of the system while in operation. This work becomes indispensable because it is prohibitively expensive or simply too dangerous to allow trainees use the real equipment in a power plant. The Gas Turbine operation’s simulator is born from Object Oriented Programming, employing key programming languages. The simulator design focused on specific tasks in the operation of the Gas Turbine which include; startup, synchronization and monitoring of vital parameters like vibration, temperature, pressure, and angle of the Inlet Guide Vane. The statuses of various valves, pumps and motors as well as the Performance of actuators and the response of concatenated components are also being tracked. The simulator was found to effectively mimic a real plant life. With this simulator, trainee operators in Gas Turbine can spend time learning valuable lessons in a "safe" virtual environment yet living a lifelike experience. This will go a long way in minimizing operators’ error in GT power plants, thereby curtailing power outages and conserving power plant components.

Publisher

Open Access Pub

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3