Enzyme Immobilization On Polypropylene Film: A Role Model For Biocatalytic Polymer Membranes?

Author:

Gartner Patrizia1,Rudat Jens1,Bilger Maximilian2,Grünert Tom2,Lanza Gisela1

Affiliation:

1. Karlsruhe Institute of Technology (KIT), wbk Institute of Production Science, Kaiserstr.12 76131 Karlsruhe, Germany.

2. KIT, Institute of Process Engineering in Life Sciences 2: Electrobiotechnology, Kaiserstr.12 76131 Karlsruhe, Germany.

Abstract

Polymer electrolyte membrane (PEM) technologies hold promise for sustainable energy solutions, yet pinhole-related challenges persist. Our research introduces a novel biohybrid approach to self-healing, enhancing multiple healing cycles with minimal membrane disruption. Initial steps involve immobilizing enzymes on a polymeric membrane. This study establishes the immobilization process and analytical framework through enzyme immobilization on polypropylene. Applicability and stability are investigated, laying groundwork for potential Nafion™ applications and advancing climate neutral energy. Qualitative analysis employs colorimetric p-NPA assay on polypropylene-immobilized lipase from Candida rugosa (CRL) and Lipase B from Candida antarctica (CALB). Both enzymes hold their temperature optimum at 50°C which is increased by 10°C via immobilization. Diisopropylcarbodiimide (DIC) is optimal for immobilization. Synchronous enzyme and DIC addition is advantageous. After 8 reuse cycles, immobilized enzymes retain 54.3% residual activity. Immobilizates exposed to PEM fuel cell conditions show better stability due to covalent immobilization than free CRL. Yet, declines occur under stressors like 60 °C and concentrated alcohol. Immobilizates remain resilient at pH 3 and under oxidizing as well as reducing conditions constituted by varied gas atmospheres. Considering PEM fuel cells' operational range, in-depth investigations across conditions are vital. Future studies target long-term PEM fuel cell lifespans, focusing on extremophilic enzymes or modifications for high-temperature stability. Subsequently, the transferability of the immobilization method to Nafion™ shall be deliberated based on the outcomes.

Publisher

Open Access Pub

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3