Features of antifungal therapy during long-lasting infectious process: a clinical case of fungal keratitis and profile of antifungal sensitivity based on assessing biofilm formation

Author:

Valieva R. I.1ORCID,Lisovskaya S. A.1,Mayanskaya K. A.2,Samigullin D. V.3,Isaeva G. Sh.1

Affiliation:

1. Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University

2. Ophthalmological Clinic “Eye Surgery of Rascheskov”

3. Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of RAS

Abstract

Among infectious diseases, opportunistic mycoses hold a special place. There has been accumulating a lot of evidence regarding the clinical and epidemiological aspects of infection caused by Fusarium spp., which global incidence rate among microbial keratitis ranges from 2 to 40% depending on the geographical location of the country. Colonizing mucous membranes, fungi can exist not only in the form of plankton, but form biofilms after surface attachment, which leads to elevated resistance to multiple antifungal agents. Here we describe a clinical case of fungal keratitis due to Fusarium solani by determining profile of the antifungal sensitivity for isolated fungal strains, by taking into account their potential for biofilm formation. We used an F. solani culture isolated from the patient as well as F. solani test culture obtained from the Russian National Collection of Microorganisms. While determining the sensitivity of fungal planktonic cultures to antifungal agents from the azole group (fluconazole, voriconazole), amphotericin B and terbinafine, it was revealed that antimycotics amphotericin B and voriconazole exerted a marked antifungal activity against clinical isolate, whereas the plankton F. solani test culture was more sensitive to all groups of antifungal agents. Due to a long-lasting progressive course of the infectious process and the high biofilm-forming ability of the clinical strain F. solani, the activity of antifungal agents on biofilm cells was modeled and examined in vitro. It was shown that regarding to the fungal biofilms, value of the minimally inhibitory concentration exceeded those for planktonic cultures by 100-fold. The mechanisms of action for antifungal agents on vital parameters of fungal cell structures were analyzed by using confocal laser scanning microscopy after staining samples with propidium iodide and acridine orange for 15 min to detect changes between intact and damaged cell surface. It was found that within the biofilm fungal cells preserved viability even after exposure to high concentrations of antifungals. In addition, despite the fungicidal drug activity at substantial concentrations acting on the biofilm cell membrane, the cell nuclei remained viable. Owing to the presence ot the mechanism of resistance in mycelial fungi shown in the study, it is necessary to take into account and investigate characteristics of biofilms in terms of drug sensitivity that will allow to optimize a choice of antimicrobial therapy.

Publisher

SPb RAACI

Subject

Infectious Diseases,Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modern Technologies in Diagnosis of Fungal Keratitis (Review);Sovremennye tehnologii v medicine;2023-04-28

2. Multiple drugs;Reactions Weekly;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3