Author:
Kontarov N. A.,Bahromeeva A. A.,Dolgova E. I.,Pogarskyia I. V.,Kontarova E. O.,Juminova N. V.
Abstract
Acute respiratory viral infections, including influenza, comprise the most common group of seasonal viral infections. Influenza is the most common and dangerous viral infection. The only way to control it is influenza vaccination. Regarding infections caused by parainfluenza and respiratory syncytial virus, only symptomatic treatment is available. Influenza virus quickly bypasses post-vaccination immunity due to its ability to antigenic drift and genetic reassortment. Available antiviral drugs quickly lose effectiveness, especially in relation to highly contagious influenza virus strains. The aim of the study was to create chemotherapeutic agent with a multi-layered effect on all viral structures: surface proteins, lipid membrane and ribonucleoprotein. Such drugs include polyelectrolytes (PE), particularly, polyallylamine (PAA), which showed strong virus-inhibiting effect in combination with low cytotoxicity against several influenza strains in MDCK cell culture and as well as measles virus in Vero cell culture. Materials and methods. In this work, an extended study on PAA antiviral activity and cytotoxicity was carried out using three influenza virus strains in A549 cell line, parainfluenza virus type 3 (HPIV-3) and respiratory syncytial virus (RSV) in A549, HEp-2, Vero, L-41, MA-104 cell lines. Results. It was shown that influenza and RSV were the most sensitive to PAA,so that virus activity decreased by 3 orders of magnitude in human lung carcinoma cells A549. The lowest antiviral activity was registered in Vero cells, which may be because it lacks interferon production system. Based on the results of in vitro experiments, PAA can be considered as a broad-spectrum antiviral drug not only against influenza, but also other human respiratory viruses.
Reference10 articles.
1. Artyushenko S.V., Kontarov N.A., Yuminova N.V., Zverev V.V., Kontarova E.O., Balaev N.V. Influence of polyelectrolytes on measles virus infectivity. Journal of Microbiology, Epidemiology and Immunobiology, 2011, vol. 88, no. 4, pp. 36–40.
2. Synthetic sulfonated derivatives of poly(allylamine hydrochloride) as inhibitors of human metapneumovirus
3. Novel Polyanions Inhibiting Replication of Influenza Viruses
4. Influenza
5. Kontarov N.A., Ermakova A.A., Grebionkina N.S., Yuminova N.V., Zverev V.V. The study of the antiviral activity of polyelectrolytes with respect to the influenza virus. Problems of Virology, 2015, vol. 60, no. 4, pp. 5–9.