<i>Acinetobacter baumannii</i> in blood-borne and central nervous system infections in intensive care unit children: molecular and genetic characteristics and clinical significance

Author:

Sadeeva Zulfirya Z.,Novikova Irina E.,Alyabyeva Natalia M.,Lazareva Anna V.,Komyagina Tatiana M.,Karaseva Olga V.,Vershinina Marina G.,Fisenko Andrey P.

Abstract

Acinetobacter baumannii is a representative of the peak priority nosocomial pathogens capable of causing infections with high mortality and economic treatment costs. The purpose of our study was to determine a role of A. baumannii in blood-borne and central nervous system infections in children. We conducted a retrospective study of A. baumannii associated cases of bacteremia and CNS infection in children. A. baumannii strains were isolated from 17 children followed up with surgical pathology (congenital heart defects 24%, abdominal pathology 29%, severe combined trauma 29%) and with somatic diseases accompanied by antibacterial and/or glucocorticosteroid therapy 18%. The minimum inhibitory concentrations of antibiotics were determined by the broth microdilution method. Carbapenemase genes were detected by real time polymerase chain reaction. Biofilm formation genes were determined by PCR. Biofilms were grown using flat-bottomed polystyrene tablets, followed by coloring, fixation, elution and detection. Population diversity was assessed by the multilocus sequence typing. About a quarter of cases of bacteremia and central nervous system infection caused by A. baumannii had an unfavorable outcome. Resistance to carbapenems, aminoglycosides, fluoroquinolones was more than 70%. Carbapenemases of the OXA-23 (24%) and OXA-40 (41%) groups were identified. The study of biofilm production showed that A. baumannii isolates formed biofilms of varying intensity: weak biofilms (59%), moderate (35%) and strong (6%). During determining the sensitivity to meropenem for biofilm and planktonic forms of cultures, it was determined that the minimum inhibitory concentrations of meropenem were significantly higher for biofilms than for planktonic forms. The minimum inhibitory concentrations of meropenem for plankton cells ranged from 0.5 to 512 mg/l. While in biofilms the same microorganisms had in vitro minimum inhibitory concentrations of meropenem within 128 to 512 mg/l and higher. All isolates bore biofilm formation regulating genes: bfmR, bap and katE. The ompA gene was found in 94% strains, and the csuA/B gene was found in 88%. The population pattern of A. baumannii isolated from blood and cerebrospinal fluid of children was represented by nine different sequence types. Most of the isolates were represented by genotypes: ST944Oxf, ST1550Oxf, ST1104Oxf belonging to the international clonal line ICL6, and ST450Oxf, ST2063Oxf and ST1102Oxf of the international clonal line ICL2. Blood-borne and central nervous system infections associated with A. baumannii have a great importance in clinical practice. This microorganism is able to persist for a long time on biotic and abiotic surfaces, has a wide natural and acquired antibiotics resistance.

Publisher

SPb RAACI

Subject

Infectious Diseases,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3