Bioinformatics analysis of putative causes for сross-reactive antibodies interacting with antigens derived from various pathogenic human papillomaviruses

Author:

Stolbikov A. S.1ORCID,Salyaev R. K.2,Rekoslavskaya N. I.3

Affiliation:

1. Siberian Institute of Plant Physiology and Biochemistry, SB RAS; Irkutsk State University

2. Siberian Institute of Plant Physiology and Biochemistry, SB RAS

3. Siberian Institute of Plant Physiology and Biochemistry, SB RAS; Irkutsk Research Center, Siberian Branch, Russian Academy of Sciences

Abstract

Human papillomaviruses (HPVs) belong to highly abundant resulting in sexually transmitted virus infections, and cause cervical cancer holding place 4 among most common cancer types in women. In 2012, there were registered 266,000 death cases and 528,000 new cases. At present, three HPV prophylactic vaccines were generated worldwide: bivalent Cervarix, quadrivalent Gardasil and nonavalent Gardasil-9. Examining such vaccines uncovered that they are able to induce anti-HPV antibody production against viral antigens lacked in vaccine formula. The mechanism of such crossneutralizing antibodies recognizing antigens derived from various HPV pathogenic types remains unknown. In our study we attempted to uncover putative basis underlying cross-reactive interaction between vaccine-induced antibodies and non-vaccine antigens by bioinformatical approaches, that might allow optimize generation of future candidate vaccines and obtain more effective polyvalent immunobiological preparations against HPV. We used amino acid sequences of L1 coat protein of four top high-risk oncogenic HPV types (16, 18, 31 and 45) in the study. Work sequences were retrieved from the International Data Base of NCBI (National Center for Biotechnology Information) and aligned by using Clustal Omega’ and BioEdit software. A search and analysis of distinct antigenic determinant (epitopes) were performed by using software suite BepiPred-2.0: Sequential B-Cell Epitope Predictor, DiscoTope 2.0 Server, and SYFPEITHI. Bioinformatics data revealed pronounced potential of cross-neutralizing vaccine-induced antibodies and non-vaccines antigens derived from high-risk pathogenic types HPV 16, 18, 31 and 45 owing to the similarity in antigenic determinants (epitopes). Common linear determinants for T- and B-cells were found in all four types of L1 protein counterparts. In addition, similar three-dimensional B-cell determinants were discovered in HPV16 L1 and HPV18 L1. Antigenic determinants derived from HPV16 L1 and HPV31 L1 exhibited most close similarity. Hence, while immunizing with HPV16 L1, a more pronounced and moderate cross-reactive antibodies interacting with HPV31 L1 as well as HPV18 L1 and HPV45 L1 antigens, respectively, should be expected. Inversely, immunization with HPV18 L1might elicit active and less efficient crossneutralizing response with HPV45 L1 as well as HPV16 L1 and HPV31 L1, respectively. 

Publisher

SPb RAACI

Subject

Infectious Diseases,Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3