Study of phenotypic and cytotoxic properties of erythroid cells of the spleen under hematopoiesis-stimulating effects

Author:

Shevchenko Yu. A.1ORCID,Nazarov K. V.1ORCID,Sennikov S. V.1ORCID

Affiliation:

1. Research Institute of Fundamental and Clinical Immunology

Abstract

In recent years, research has revealed a wide variety of erythroid cell functions, including modulation of innate and adaptive immune responses. Anemic or hypoxic stress stimulates a physiological response in the form of stress erythropoiesis, aimed at increasing oxygen delivery to tissues. Stress erythropoiesis activates progenitor cells and uses mechanisms that differ from stationary bone marrow erythropoiesis. To consider the role of erythroid cells in the regulation of hematopoiesis, hematopoiesis-activating states were modeled: chemically induced hemolytic anemia, acute blood loss, hypoxia. A series of experiments was carried out on first-generation hybrid mice CBA C57Bl6. Isolation of erythroid cells was performed using magnetic separation for the CD71 marker. The stages of differentiation of erythroid cells were determined by the combination of expression of TER-119 and CD71 markers and direct light scattering parameters in the population of both CD45-positive and CD45-negative spleen cells. To study the immunoregulatory activity of erythroid cells, we investigated the mediated cytotoxicity of splenocytes against tumor cells of the mouse melanoma B78 line after cultivation with conditioned spleen media after various hematopoiesis-stimulating effects. With various hemopoiesis-stimulating effects, the quantitative and qualitative composition of the spleen cells is reorganized depending on the compensatory mechanism for restoring homeostasis. An analysis of the cellular composition of the spleen showed that under hematopoiesis-stimulating effects, a redistribution of populations with the CD45 marker occurs: during hypoxia, the number of CD45-negative cells sharply decreases and the number of CD45-positive cells increases. The population of basophilic erythroblasts is the least susceptible to quantitative changes under all hematopoiesis-stimulating effects. During hypoxia, the most noticeable change in the cellular composition of the spleen is observed due to the increased accumulation of CD45-positive erythroid cells in the spleen. Mediators of erythroid cells of the spleen of mice after hypoxia do not lead to an increase in the cytotoxic proapoptotic effect of splenocytes on tumor cells, in contrast to the erythroid cells of the normal spleen, spleen with anemia and blood loss. Thus, it is tissue hypoxia that is the process that not only stimulates erythropoiesis, but also leads to the maximum change in the suppressive properties of surrounding cells. We assume that the implementation of compensatory mechanisms under the studied hematopoiesis-stimulating effects is aimed at activating the mechanisms of innate immunity and local immunosuppression to prevent local inflammation, accumulate nutrients, and attract cellular elements to the focus of hematopoiesis to restore homeostatic functions.

Publisher

SPb RAACI

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3