Evaluation of mediators of fibrosis and angiogenesis in the blood serum of premature infants with bronchopulmonary dysplasia

Author:

Semikina E. L.1ORCID,Snovskaya M. А.1,Basargina M. A.1,Seliverstova A. A.1,Zhuzhula A. A.1,Davidova I. V.1

Affiliation:

1. National Medical Research Center of Children's Health

Abstract

In premature birth and postpartum damage to the developing lung, the processes of the formation of pulmonary vessels and alveoli are disrupted, leading to bronchopulmonary dysplasia (BPD). BPD is a multifactorial disease and the pathogenesis of lung tissue damage is still not fully understood. Studies of angiogenesis biomarkers can be informative for assessing the development of BPD. In this study we examined the blood serum of 65 premature infants aged 6 to 180 days of life; gestational age at birth was 23-33 weeks, body weight 480-1840 g, APGAR score 5-6. All children in the early neonatal period had respiratory distress syndrome, then 46 children formed and 19 did not form bronchopulmonary dysplasia. The concentration of the factors of angiogenesis and fibrosis was determined in blood serum by ELISA. There were no differences in the levels of angiopoietins 1 and 2, vascular endothelial growth factor VEGF-D, transforming growth factor beta TGF-β, thrombospondin-1. We observed a tendency to increasing the level of VEGF-A, which is a key regulator of angiogenesis and lung maturation; we regard this tendency as a favorable sign of lung formation. We found tendencies to increase of the adhesion molecule of endothelial platelet cells PECAM-1, interleukin 8 and connective tissue growth factor CTGF. CTGF expression is enhanced by artificial lung ventilation and exposure to high oxygen concentrations. We consider an increase of CTGF in BPD to be an unfavorable change, since the binding of CTGF to VEGF inhibits VEGF-induced angiogenesis. In children with BPD, we found a decrease in the level of platelet derived growth factor PDGF-BB, the median concentration was 3180 pg/mL in BPD versus 4782 pg/mL without BPD (p = 0.024). PDGF is an important factor in tissue regeneration and plays an important role in the formation of blood vessels. We assume the decreasing of PDGF concentration in BPD can lead to a violation of the alveolarization necessary for the formation of the structure of healthy lungs. Studies of angiogenesis factors will help to better understand the pathogenesis of lung damage in BPD.

Publisher

SPb RAACI

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3