Formation of plasmon-exciton nanostructures based on quantum dots and metal nanoparticles with a nonlinear optical response

Author:

Zvyagin Andrey I.ORCID,Chevychelova Tamara A.ORCID,Perepelitsa Aleksey S.ORCID,Smirnov Mikhail S.ORCID,Ovchinnikov Oleg V.ORCID

Abstract

    The establishment of the conditions for the formation of nanostructures with plasmon-exciton interaction based onquantum dots and plasmonic nanoparticles that provide unique nonlinear optical properties is an urgent task. The study demonstrates the formation of plasmon-exciton nanostructures based on hydrophilic colloidal Zn0.5Cd0.5S, Ag2S quantum dots and metal nanoparticles.     Transmission electron microscopy and optical absorption and luminescence spectroscopy were used to substantiate the formation of plasmon-exciton hybrid nanostructures. The phase composition of the studied samples was determined by X-ray diffraction. The results obtained using ARLX’TRA diffractometer (Switzerland) indicated a cubic crystal structure (F43m) of synthesised Zn0.5Cd0.5S quantum dots and monoclinic (P21/C) crystal lattice of Ag2S. Transmission electron microscopy revealed that plasmonic nanoparticles are adsorption centres for quantum dots. The average sizes of the studied samples were determined: colloidal Ag2S quantum dots (2.6 nm), Zn0.5Cd0.5S(2.0 nm) and metal nanoparticles: silvernanospheres (10 nm) and gold nanorods (4x25 nm). The transformation of the extinction spectra of the light and the luminescence quenching of quantum dots have been established in mixtures of quantum dots and plasmonic nanoparticles.    The nonlinear optical parameters of the studied samples were determined using the Z-scanning method at wavelengths of 355 and 532 nm in the field of nanosecond laser pulses. The conditions for the formation of hybrid nanostructures that provide an increase of the coefficient of nonlinear absorption of laser pulses (355 and 532 nm) up to 9 times with a duration of 10 ns due to the reverse saturable absorption occurring due to cascade two-quantum transitions in the intrinsic and local states of colloidal quantum dots and the suppression of nonlinear refraction, were determined.    The observed changes were explained by the manifestation of the Purcell effect on the states of quantum dots in the presence of nanoresonators (gold nanorods and silver nanospheres). The results of these studies create new opportunities for the development of original systems for controlling the intensity of laser radiation, as well as quantum sensors of a new generation

Publisher

Voronezh State University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3