A model of interdiffusion occurring during the formation of thin metal films on single-crystal silicon under conditions of limited solubility of the components

Author:

Афонин Николай НиколаевичORCID,Логачева Вера АлексеевнаORCID

Abstract

       Thin metal films are used in semiconductor and microelectronic devices to form ohmic and non-ohmic contacts to singlecrystal silicon. A common feature of the used Ме–Si systems is the low mutual solubility of elements and the polycrystalline nature of metal films. Solid-phase interactions during the deposition of metals on single-crystal silicon and the subsequent vacuum annealing results in the redistribution of the elements near the Me/Si interface. An important task facing the material science of solid-state electronics is to develop a mechanism of solid-phase interaction of metal thin films and single-crystal silicon. The aim of our study – was to develop a quantitative model of interdiffusion in the Ме–Si system under conditions of limited solubility of the components.          The article suggests a mechanism of formation of Me–Si systems based on the diffusion and segregation of silicon near the intergrain boundaries of the metal and the limited formation of complexes during the diffusion-induced penetration of metal into silicon. The article suggests a model of reactive interdiffusion in thin metal film – single-crystal silicon systems under conditions of limited solubility of the components. Mathematical modelling was used to study the interaction of magnetron-sputtered metals Ti, W, and Nb with single-crystal silicon during isothermal vacuum annealing. The numerical analysis of experimental distributions of concentrations of Me and Si obtained by Rutherford backscattering spectroscopy allowed us to determine their individual diffusion coefficients in Me-Si systems.       The model can be used for empirical studies of the redistribution of the elements of two-layer systems with limited solubility, as well as to forecast the technological conditions for the production of electronic devices.

Publisher

Voronezh State University

Subject

Materials Chemistry,Electronic, Optical and Magnetic Materials,Physical and Theoretical Chemistry,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3