Channel estimation for reconfigurable intelligent surface‐aided millimeter‐wave massive multiple‐input multiple‐output system with deep residual attention network

Author:

Zheng Xuhui1,Liu Ziyan12ORCID,Cheng Shitong1,Wu Yingyu1,Chen Yunlei1,Zhang Qian1

Affiliation:

1. College of Big Data and Information Engineering Guizhou University Guiyang China

2. The State Key Laboratory of Public Big Data Guizhou University Guiyang China

Abstract

AbstractWe first model the channel estimation in sixth‐generation (6G) systems as a super‐resolution problem and adopt a deep residual attention approach to learn the nontrivial mapping from the received measurement to the reconfigurable intelligent surface (RIS) channel. Subsequently, we design a deep residual attention‐based channel estimation framework (DRA‐Net) to exploit the RIS channel distribution characteristics. Furthermore, to transfer the RIS channel feature maps extracted from the residual attention blocks (RABs) to the end of the estimator for accurate reconstruction, we propose a novel and effective feature fusion approach. The simulation results demonstrate that the proposed DRA‐Net‐based channel estimation method outperforms other deep learning‐based and conventional algorithms.

Funder

Natural Science Foundation of Guizhou Province

Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province

Natural Science Foundation for Young Scientists of Shanxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3