Large‐scale 3D fast Fourier transform computation on a GPU

Author:

Lee Jaehong1ORCID,Kim Duksu1ORCID

Affiliation:

1. Computer Science and Engineering KOREATECH Cheonan Republic of Korea

Abstract

AbstractWe propose a novel graphics processing unit (GPU) algorithm that can handle a large‐scale 3D fast Fourier transform (i.e., 3D‐FFT) problem whose data size is larger than the GPU's memory. A 1D FFT‐based 3D‐FFT computational approach is used to solve the limited device memory issue. Moreover, to reduce the communication overhead between the CPU and GPU, we propose a 3D data‐transposition method that converts the target 1D vector into a contiguous memory layout and improves data transfer efficiency. The transposed data are communicated between the host and device memories efficiently through the pinned buffer and multiple streams. We apply our method to various large‐scale benchmarks and compare its performance with the state‐of‐the‐art multicore CPU FFT library (i.e., fastest Fourier transform in the West [FFTW]) and a prior GPU‐based 3D‐FFT algorithm. Our method achieves a higher performance (up to 2.89 times) than FFTW; it yields more performance gaps as the data size increases. The performance of the prior GPU algorithm decreases considerably in massive‐scale problems, whereas our method's performance is stable.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Electrical and Electronic Engineering,General Computer Science,Electronic, Optical and Magnetic Materials

Reference34 articles.

1. An algorithm for the machine calculation of complex Fourier series

2. The Design and Implementation of FFTW3

3. M.FrigoandS. G.Johnson FFTW: an adaptive software architecture for the FFT (Proc. 1998 IEEE Int. Conf. Acoust. Speech Signal Process. Seattle WA USA) 1998 pp.1381–1384.

4. Intel Intel® Math Kernel Library 2020.https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Accelerating k-NN with MPI and Near-Memory Processing;2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW);2024-05-27

2. Multicolor two-photon light-patterning microscope exploiting the spatio-temporal properties of a fiber bundle;Biomedical Optics Express;2024-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3