Inceptionv3‐LSTM‐COV: A multi‐label framework for identifying adverse reactions to COVID medicine from chemical conformers based on Inceptionv3 and long short‐term memory

Author:

Das Pranab1ORCID,Mazumder Dilwar Hussain1ORCID

Affiliation:

1. Department of Computer Science and Engineering National Institute of Technology Nagaland Dimapur India

Abstract

AbstractDue to the global COVID‐19 pandemic, distinct medicines have been developed for treating the coronavirus disease (COVID). However, predicting and identifying potential adverse reactions to these medicines face significant challenges in producing effective COVID medication. Accurate prediction of adverse reactions to COVID medications is crucial for ensuring patient safety and medicine success. Recent advancements in computational models used in pharmaceutical production have opened up new possibilities for detecting such adverse reactions. Due to the urgent need for effective COVID medication development, this research presents a multi‐label Inceptionv3 and long short‐term memory methodology for COVID (Inceptionv3‐LSTM‐COV) medicine development. The presented experimental evaluations were conducted using the chemical conformer image of COVID medicine. The features of the chemical conformer are denoted utilizing the RGB color channel, which is extracted using Inceptionv3, GlobalAveragePooling2D, and long short‐term memory (LSTM) layers. The results demonstrate that the efficiency of the Inceptionv3‐LSTM‐COV model outperformed the previous study's performance and achieved better results compared to MLCNN‐COV, Inceptionv3, ResNet50, MobileNetv2, VGG19, and DenseNet201 models. The proposed model reported the highest accuracy value of 99.19% in predicting adverse reactions to COVID medicine.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Localization on Mixed Image Tempering Techniques Using U-Net;2024 IEEE Students Conference on Engineering and Systems (SCES);2024-06-21

2. K1K2NN: A novel multi-label classification approach based on neighbors for predicting COVID-19 drug side effects;Computational Biology and Chemistry;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3