Design and simulation of a rectangular planar printed circuit board coil for nuclear magnetic resonance, radio frequency energy harvesting, and wireless power transfer devices

Author:

Noohi Mostafa1ORCID,Pourmand Adel123ORCID,Badri Ghavifekr Habib1,Mirvakili Ali4

Affiliation:

1. Faculty of Electrical Engineering Sahand University of Technology Tabriz Iran

2. Institute for Polymer Materials Sahand University of Technology Tabriz Iran

3. Tissue Engineering and Stem Cells Research Center Sahand University of Technology Tabriz Iran

4. Department of Electrical Engineering Yazd University Yazd Iran

Abstract

AbstractIn this study, a planar printed circuit board (PCB) coil with FR4 substrate was designed and simulated using the finite element method, and the results were analyzed in the frequency domain. This coil can be used in wireless power transfer (WPT) as a transmitter or receiver, eliminating wires. It can also be used as the receiver in radio frequency energy‐harvesting (RF‐EH) systems by optimizing the planar PCB coil to convert radio‐wave energy into electricity, and it can be employed as an excitation (transmitter) or receiver coil in nuclear magnetic resonance (NMR) spectroscopy. This PCB coil can replace the conventional coil, yielding a reduced occupied volume, a fine‐tuned design, reduced weight, and increased efficiency. Based on the calculated gain, power, and electromagnetic and electric field results, this planar PCB coil can be implemented in WPT, NMR spectroscopy, and RF‐EH devices with minor changes. In applications such as NMR spectroscopy, it can be used as a transceiver planar PCB coil. In this design, at frequencies of 915 MHz and 40 MHz with 5 mm between coils, we received powers of 287.3 W and 480  W, respectively, which are suitable for an NMR coil or RF‐EH system.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,General Computer Science,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3