Effect of rice husk ash on soil stabilization at Dinajpur City

Author:

Mostazid Md. Ibrahim

Abstract

Understanding local conditions is crucial for applying soil stabilization principles from other regions to a specific country for effective and sustainable stabilization methods. This investigative study delves into the suitability of locally available Rice Husk Ash (RHA) for incorporation into local building construction practices at Dinajpur, Bangladesh, aiming to minimize the volume of waste disposed of in the environment, thereby mitigating environmental pollution. Conventional soil stabilization techniques are becoming increasingly expensive due to the rising costs of stabilizing agents such as cement. Replacing a portion of the stabilizing agent with RHA could potentially reduce the cost of stabilization while also minimizing environmental harm. RHA comprises 85-90% silica, making it an excellent substitute for silica in soil stabilization. Silica is recognized as an effective binding agent alongside cement. The soil sample selected for this research is a highly plastic clay (CH), which necessitates significant strength enhancement. Three soil samples were stabilized with varying percentages of RHA and a minimal amount of cement. Observations were made to assess the changes in soil properties, including Maximum Dry Density (MDD), Optimum Moisture Content (OMC), and Unconfined Compressive Strength (UCS). The results obtained indicate that increasing RHA content leads to an increase in MDD but a decrease in OMC. Additionally, the UCS of the soil exhibits substantial improvement to up to 88% with increasing RHA content up to 10%. Based on the observed maximum strength enhancement, a 10% RHA content combined with 6% cement is recommended as the optimal combination for practical applications.

Publisher

ACADEMY Saglik Hiz. Muh. Ins. Taah. Elekt. Yay. Tic. Ltd. Sti.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3