Fiber Bragg Grating Temperature Sensor and its Interrogation Techniques

Author:

Faisal Muhammad

Abstract

In this comprehensive review, our focus centers novel strategies and methodologies in FBG temperature sensors and their interrogation techniques investigated for sensing in different environments. FBG temperature sensors are investigated for cryogenic, ambient, high-temperature and ultrahigh-temperature environments. Interrogation techniques encompasses optical interferometry, optical edge filtering, time division multiplexing, optical spectrum analysis (OSA) and wavelength division multiplexing (WDM), each possessing distinct characteristics and working principles. The optical interferometry technique offers exceptional sensitivity and high resolution but has a relatively lower temperature sensing range. The optical edge filtering technique provides good temperature sensitivity, enhanced resolution and nominal temperature sensing range which are mainly dependent on the span and slope of the edge of the optical filter. TDM interrogation technique has the multiplexing capability and cost-effectiveness but limitations like the requirement of partial reflective matched FBGs, spatial separ¬¬¬¬ation of the FBGs and the potential cross-talk make it less attractive for commercial applications. OSA and WDM techniques excel in multiplexing capabilities and boast the widest temperature sensing range. However, OSA is limited for research applications only. On the other hand, WDM stands out with its cost-effective per-sensor implementation and extensive usage in commercial interrogation systems. The significance of this review lies in its ability to provide researchers, engineers, and practitioners with a coherent understanding of the evolving FBG temperature sensing landscape. By consolidating and highlighting recent breakthroughs, we aim to inspire further research initiatives and foster the development of optimized FBG temperature sensing systems.

Publisher

ACADEMY Saglik Hiz. Muh. Ins. Taah. Elekt. Yay. Tic. Ltd. Sti.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3