Effect of Electric Arc Furnace Slag on the Engineering Properties of Lateritic Soil

Author:

Ogundare Damilola Ayodele

Abstract

It is imperative for geotechnical engineers to harness ways of improving lateritic soil with industrial waste materials in other to satisfy the required highway pavement construction. This work investigated the effect of Electric Arc Furnace Slag (EAFS) on the engineering properties of Lateritic soil. Tests to determine the X-Ray Florescence (XRF), X-Ray Diffraction (XRD), grain size analysis and specific gravity of the soil sample and EAFS and the lateritic soil stabilization with varying percentages (0%, 4%, 8%, 12% and 16%) of EAFS using Atterberg limits, Compaction and Shear Strength were carried out. The soil sample was classified as A-7-5 (6) and ML according to American Association of State Highway Transportation Official (AASHTO) and Unified soil classification system while the silica-sesquioxide ratio and mineral contents showed that the soil is a lateritic soil as they contain both swelling and non-swelling clay minerals. The stabilized soil sample revealed that EAFS increases the maximum dry density (20.0KN/m3 to 25.0KN/m3) and decreases the optimum moisture content (18.50% to 13.00%) which could be attributed to the lower affinity of EAFS to water thus, improving the compaction properties. Also, the EAFS has significant effect on the strength parameters of the lateritic soil as it increases the shear strength from 551.11KN/m2 at virgin state to 974.44KN/m2 at 16% EAFS. Conclusively, electric arc furnace slag has positive influence on the geotechnical properties of the lateritic soil as it will not only solve the waste disposal problem but can be used as additive to improve the engineering properties of lateritic soil.

Publisher

ACADEMY Saglik Hiz. Muh. Ins. Taah. Elekt. Yay. Tic. Ltd. Sti.

Subject

Geriatrics and Gerontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3