Consistent Order Approximations in Extended Thermodynamics of Polyatomic Gases

Author:

Pennisi Sebastiano

Abstract

In this article the known models are considered for relativistic polyatomic gases with an arbitrary number of moments, in the framework of Extended Thermodynamics. These models have the downside of being hyperbolic only in a narrow domain around equilibrium, called "hyperbolicity zone". Here it is shown how to overcome this drawback by presenting a new model which satisfies the hyperbolicity requirement for every value of the independent variables and without restrictions. The basic idea behind this new model is that hyperbolicity is limited in previous models by the approximations made there. It is here shown that hyperbolicity isn't limited also for an approximated model if terms of the same order are consistently considered, in a new way never used before in literature. To design and complete this new model, well accepted principles are used such as the "Entropy Principle" and the "Maximum Entropy Principle". Finally, new trends are analized and these considerations may require a modification of the results published so far; as a bonus, more manageable balance equations are obtained. This allows to obtain more stringent results than those so far known. For example, we will have a single quantity (the energy e) expressed by an integral and all the other constitutive functions will be expressed in terms of it and its derivatives with respect to temperature. Another useful consequence is its easier applicability to the case of diatomic and ultrarelativistic gases which are useful, at least for testing the model in simple cases.

Publisher

ACA Publishing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3