Abstract
This paper studies the linear theory of thermoelastic materials with inner structure whose particles,in addition to the classical displacement and temperature fields, possess microtemperatures. The present work considers the 2D equilibrium theory of thermoelasticity for solids with microtemperatures. This paper is devoted to the explicit solution of the Neumann type boundary value problem for an elastic plane, with microtemperatures having a circular hole. Special representations of the regular solutions of the considered equations are constructed by means of the elementary (harmonic, bi-harmonic and meta-harmonic) functions. Using the Fourier method, we presented the solution of the Neumann type boundary value problem for the plane with circular hole in the explicit form.