Abstract
The production of metal-containing nanoparticles is one of the important problems of modern science related to the creation of nanomaterials. Nanocomposites based on polymer matrices and uniformly distributed nanoparticles (quantum dots) isolated from each other in them have unique photoluminescent properties; in addition, polymer matrices are convenient stabilizers of nanoparticle growth and have good mechanical properties. Of the nanoparticles of semiconducting materials, metal chalcogenides (CdS, Cu) are of the greatest interest. In the chemical synthesis of metal sulfides in a polymer medium, H2S or a compound containing active sulfur can act as a sulfiding agent. Samples of nanocomposites based on semiconductor sulfides and polyethylene have been synthesized. The composition, structure and structure of nanoparticles were studied by X-ray phase analysis and spectroscopy. Investigated from thermophysical properties. From studies of the temperature dependence of the heat capacity of the compositions, LDPE and CdS compositions, It can be seen that there is a peak on the curve in the temperature range of 100-2250K, which almost degenerates with an increase in the concentration of the filler. Measurements of the temperature dependence of thermal conductivity and heat capacity revealed the presence of reversible structural rearrangements in polymer composites with metal oxide fillers. Moreover, various methods, within the limits of errors, fix a constant transition temperature of electrical conductivity, thermal conductivity and heat capacity, which speaks in favor of the fact that the basis of all detected anomalies is a single mechanism, i.e. structural rearrangement of defect states of polymer composites.