Effect Biosynthesis of fenugreek leaves nanomaterial on some plant's germination using saline water

Author:

Yaqoop Rahi1 Alaa1,A. Guda Muthik2ORCID,Abdulbary Meison3,T. Khashan Kareem4

Affiliation:

1. Department of Biology. Faculty of basic education, University of Sumer, Iraq

2. Department of Ecology, Faculty of Sciences, University of Kufa, Iraq

3. Department of Pharmacognosy and Medicinal Plant, Faculty of Pharmacy, University of Kufa, Iraq

4. Department of Biology, Faculty of Science, University of Kufa, Iraq

Abstract

The synthesis of new, low-cost nanomaterials that do not cause harm to the environment is of great importance in modern Science. In addition to the importance of plant use in medical purposes and the active substances they contain, this research includes the synthesis of nanomaterials from medical plant (fenugreek) Trigonella foenum extract for tolerating irrigation with saline water. The extract of the dried and ground leaves of the T. foenum plant was taken, centrifuged, filtered, and then dried. The resulting material was tested by the X-ray Diffract meter (XRD) and the Atomic Force Microscope (AFM) examining to ensure it was on the nanoscale. Aqueous dilution at a ratio of 1: 1 used to irrigation seeds of the aromatic plants (Apium graveolens and Lepidium sativum) with saline water 0.05 g / l. The germination ratios, the extreme length and the plumular were calculated after 3, 5, 7 and 10 days of germination. The germination rates were superior to the treatment with a nanomaterial and saline water mixture for 98.5% in A. graveolens and 97.2% in L. sativum. Saline water treatment showed 75% for A. graveolens and 78% for L. sativum. The extreme length reached 14.5 cm for the A. graveolens and 11.3 cm for the L. sativum in the mixture treatment after 10 days. Saline water treatment gave 6.3 cm and 8.5 cm, respectively. The plumular measurements were similar to the radical results. These results proved the synthesis of a natural bio-nanomaterial that is easy to prepare, low in cost and have a stimulating effect on germination, growth and tolerance irrigation with saline water. This improves our ability to utilize water resources and propagation methods for aromatic and medical plants. Keywords: medical plant, aromatic plants, nanoparticle, Apium graveolens and Lepidium sativum

Publisher

Clinical Biotec

Subject

Infectious Diseases,Applied Microbiology and Biotechnology,Epidemiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3