Affiliation:
1. Department of Biology, College of Education for Pure Sciences, University of Mosul, Mosul, IRAQ
2. Department of Biology, College of Science, University of Baghdad, Baghdad, IRAQ
Abstract
The research deals with anaerobic fermentation and creating the conditions for bacteria (Methanogens) to carry out the process of hydration, acidification and production of methane gas. The study included the design of an anaerobic reactor made of thick glass (12) mm, with dimensions (of 35 x 35 x 35) cm, with a thermal heater inside it and a temperature set at (45) ℃, and then filled with Dairy wastewater. The Treatment period of the reactor reached two months, during which water samples were taken (72hrc) for laboratory tests (pH, COD). The laboratory tests began on 1/1/2021 and ended on 1/3/2021. COD removal of 87.12% was achieved with a neutral pH at the beginning of the second month of treatment. Biogas was obtained in this anaerobic reactor by fermentation and in the presence of bacteria (Methanogens), and its amount during the treatment period was 1.6 m3.
Keywords: Bioenergy, Dairy waste Water, anaerobic reactor, Fermentation, bacteria (Methanogens)
Subject
Infectious Diseases,Applied Microbiology and Biotechnology,Epidemiology,Biotechnology
Reference12 articles.
1. 1. Amin Goli, Ahmad Shamiri, Susan Khosroyar, Amirreza Talaiekhozani, Reza Sanaye, Kourosh Azizi,. A Review on Different Aerobic and Anaerobic Treatment Methods in Dairy Industry Wastewater. Journal of Environmental Treatment Techniques. 2019 ; 6(1):113-141 .
2. 2. Dawood Salman D, Qasim Turki W, Riad Khudhaier. Comparison between the presence and absence of mixing in the anaerobic bio S logical treatment of liquid waste for the cheese industry. Revis Bionatura 2022;7(2) 41. http://dx.doi.org/10.21931/RB/2022.07.02.41.
3. 3. Hendrickson EL, Leigh JA. Roles of coenzyme F420-reducing hydrogenases and hydrogen-and F420-dependent methylenetetrahydromethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis. Journal of bacteriology. 2008 ;190(14):4818-21.
4. 4. Dennis, A. and Burke, P.E. (2001) Dairy Waste Anaerobic Digestion Handbook. Environmental Energy Company, Olympia.
5. 5. Uzodinma, E.O.; Ofoefule, A.U.; Eze, JI; Mbaeyi, I.; Onwuka, N.D. Effect of some organic wastes on the biogas yield from carbonated soft drink sludge. Sci. Res. Essays 2008, 3, 401–405.