Predominant genetic mutations leading to or predisposing diabetes progress: A Review

Author:

Rabeea Banoon Shaima1ORCID,Younis Alfathi Mohammed2ORCID,Shokouhi Mostafavi Seyyed Khalil3ORCID,Ghasemian Abdolmajid4ORCID

Affiliation:

1. Department of Biology, College of Science, University of Misan, Maysan, Iraq

2. Department of Biology, College of Education for Pure Science, University of Mosul, Mosul, Iraq.

3. Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

4. Noncommunicable diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran

Abstract

Diabetes mellitus (DM) arises following poor capacity to generate or secrete insulin or insulin resistance; hence insulin production impairment creates the illness. Individuals can control their weight, impulsivity, blood pressure, and blood lipids at the commencement of the disease. A single genetic mutation affects nearly 3% of people with diabetes. Surprisingly, beta cell function is regulated by more than 20 genes. Benefits of genetic diagnosis include improved therapy, better prediction of illness prognosis and progression, genetic counseling, and possibly prevention. Alpha HNF1 mutations in the early stages may respond to the regimen. Still, most patients need it because they control their blood glucose and will be subject to microvascular or macrovascular complications. In cases where insulin does not control sugar, using low-dose sulfonylureas would be beneficial and lower four times the glucose metabolism of metformin. These patients are susceptible to sulfonylureas and may be treated for years in case of no blood glucose attack complications. The drug will start at one-fourth of the adult dose: MODY1. It is caused by a mutation in the alpha-HNF 4 gene and is relatively uncommon. The same is true, but the threshold for renal excretion is not low, and the incidence of upward alpha-HNF 4 mutations in cases where there is a robust clinical panel for alpha HNF 1 but not confirmed by genetic sequencing should be considered. The disease is also susceptible to sulfonylureas: MODY4 with a mutation in the MODY6 gene, IPF1, with a mutation in MODY7, NeuroD1 is characterized by a carboxy sterilise mutation, which is not common: MODY2. In children and adolescents, an increment in fasting blood glucose of 100 to 150 mg/dl is not typical. The incidence of this condition is usually considered to be type 1 or 2 diabetes, but a large percentage of the above patients are heterozygote individuals, the glucokinase mutations. Specific mutations, including those rare variants in WFS1 and ABCC8 genes, insulin receptor (IR), fructose 6-phosphate aminotransferase (GFPT2), and nitric oxide synthase (eNOS), as well as mouse pancreatic β‐cell lines (Min6 and SJ cells), showed that the HDAC4 variant (p. His227Arg) had been directly linked with T2DM. Keywords: type-2 diabetes, genetic mutations, risk factors

Publisher

Clinical Biotec

Subject

Infectious Diseases,Applied Microbiology and Biotechnology,Epidemiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3