Affiliation:
1. Department of Plant Protection, College of Agriculture, University of Karbala, Iraq
Abstract
This study was conducted in the College of the Agriculture/University of Karbala to control the fungus Ectophoma multirostrata that causes root rot of Celosia argentea by using Azotobacter chrocooccum, Salicylic acid and the chemical pesticide Beltanol. The pathogenic E. multirostrata was isolated for the first time in Iraq and showed a reduction in seed germination by 16.66% and 16.00%. The results showed that the bio-control bacteria A. chrocooccum, Salicylic acid and Beltanol effectively reduced the infection rate and severity of Celosia argentea root rot disease and increased the growth parameters. Among the treatments, Beltanol was the highest in reducing the infection rate and severity down to 0.00%, followed by the treatment of integration between A. chrocooccum and Salicylic acid to minimize infection and severity to 16.33% and 8.00%, compared to the infected untreated that showed 80%, 62.00% respectively. In addition, the A. chrocooccum and Salicylic acid integration improved plant growth, including shoot length, shoot and root dry weight to be 22.50 cm, 0.423 g and 0.133 g, compared to the untreated infected treatment that resulted in 5.00 cm, 0.090 g, and 0.003g, respectively.
Keywords: Celosia argentea, Ectophoma multirostrata, Azotobacter chrocooccum, Root rot
Subject
Infectious Diseases,Applied Microbiology and Biotechnology,Epidemiology,Biotechnology
Reference33 articles.
1. 1. Kamoru. AA; Kareem, Y.K.; Yusuf, O.K.; Stephen, A.O. Effects of electromagnetic treatment of irrigation water on growth and yield of Lagos Spinach (Celosia argentae) 2020, Agri. Eng. Int., 22(2).
2. 2. Dkhyl, F.A. Integration between biological factors and chemical pesticides in controlling the pathogens of root diseases of ornamental plants in the nurseries of Karbala and Babil Province 2021, Master's thesis University of Karbala, Iraq
3. 3. Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Barka, E. A. Biological Control of Plant Pathogens: A Global Perspective. Micro., 2022 10(3), 596.
4. 4. Shah, M. A. W.; Yasmin, H.; Mumtaz, S.; El-Serehy, H. A.; Khan, N.; Hassan, M. N. Prevalence of Wheat Associated Bacillus spp. and Their Bio-Control Efficacy Against Fusarium Root Rot 2021, Front Microbiol., 12, 798619.
5. 5. Chobe, D. R.; Tarafdar, A.; Chandran, U. S.; Sudharani,; Sharma, M. First report of Ectophoma multirostrata causing root rot in chickpea. 2020, Plant disease, 104(6), 1866-1866.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献