Comparison of the accuracy of multiple regression analysis using four methods to predict the functional independence measure at discharge
Author:
Affiliation:
1. Department of Rehabilitation Medicine, Kumamoto Kinoh Hospital
Publisher
Kaifukuki Rehabilitation Ward Association
Link
https://www.jstage.jst.go.jp/article/jjcrs/11/0/11_65/_pdf
Reference18 articles.
1. 1. Data management service of the Uniform Data System for Medical Rehabilitation and the Center for Functional Assessment Research: Guideline for use of the Uniform Data Set for Medical Rehabilitation. Version 3.1, State University of New York at Buffalo, Buffalo, 1990.
2. 2. Heinemann AW, Linacre JM, Wright BD, Hamilton BB, Granger C. Prediction of rehabilitation outcomes with disability measures. Arch Phy Med Rehabil 1994; 75: 133-43.
3. 3. Chumney D, Nollinger K, Shesko K, Skop K, Spencer M, Newton RA. Ability of Functional Independence Measure to accurately predict functional outcome of stroke-specific population: systematic review. J Rehabil Res Dev 2010; 47: 17-29.
4. 4. Meyer MJ, Pereira S, McClure A, Teasell R, Thind A, Koval J, et al. A systematic review of studies reporting multivariable models to predict functional outcomes after post-stroke inpatient rehabilitation. Disabil Rehabil 2015; 37: 1316-23.
5. 5. Tokunaga M, Hashimoto Y, Watanabe S, Nakanishi R, Yamanaga H, Yonemitsu K, et al. Methods for improving the predictive accuracy using multiple linear regression analysis to predict the improvement degree of Functional Independence Measure for stroke patients. Int J Phys Med Rehabil 2017; 5: 414.
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Scoping Review of Prognosis Prediction Studies Focusing on Activity and Participation Among Patients with Stroke in Japan;Asian Journal of Occupational Therapy;2024
2. Explanatory variables to use in a multiple regression analysis to predict stroke patients' motor FIM score at discharge from convalescent rehabilitation wards: an investigation of patients with a motor FIM score of less than 40 points at admission;Japanese Journal of Comprehensive Rehabilitation Science;2020
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3