Fusion Architectures for 3D Target Tracking Using IRST and Radar Measurements

Author:

Naidu VPS

Abstract

Seven different architectures are presented to fuse IRST and radar data to track the target in 3D Cartesian coordinates, with the measurements available in polar coordinates. Performance of these architectures is checked with simulated data. Detailed mathematical expressions are provided which could be useful for algorithm implementation. From this study, it is concluded that CM (Common Measurements) architecture gives state estimates with relatively less uncertainty followed by SVF (State Vector Fusion). IRST gives target states with relatively high uncertainty followed by radar. This shows the necessity of the fusion in tracking system. In all, CM architecture is very simple, easy to implement and can be used in real time.

Reference14 articles.

1. Samuel Blackman and Robert Popoli., "Design and Analysis of Modern Tracking Systems", Artech House, London, 1999.

2. David L. Hall and Sonya A. H. McMullen., "Mathematical Techniques in Multisensor Data Fusion", Second edition, Artech House, London, 2004.

3. Naidu, V.P.S., "Fusion of Radar and IRST Sensor Measurements for 3D Target Tracking using Extended Kalman Filter", Defence Science Journal, Vol. 59, No.2, pp.175-182, March 2009.

4. Yaakov Bar-Shalam and X. Li., "Estimation and Tracking: Principles, Techniques, and Softwares", Artech House, London, 1993.

5. Girija, G. and Christoph Zorn., "Flight Path Reconstruction for Sensor Failure Detection and Health Monitoring", NAL PD FC 0418, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3