Processing and Characterization of AA2618/Sicp Metal Matrix Composites by Stir Casting Method

Author:

Sakthivel A.,Palaninathan R.,Velmurugan R.,Raghothama Rao P.

Abstract

The future performance requirements of aero-engines must have improved thrust to weight ratios, reduced SFC and reduced signatures. Current materials technology within aero engines will restrict the thermodynamic cycle improvements and thus new materials and manufacturing techniques must be developed if the predicted improvements in engine performance will be due to material technology. The potential of metal matrix composite (MMC) materials for significant improvement in performance over conventional alloys have been recognized widely. However, their manufacturing costs are still relatively high. A critical step in the processing of cast particle reinforced MMCs is the incorporation of the ceramic particles into the molten matrix alloy. Therefore, wettability of the reinforcement particle by the matrix alloy must be optimized even though some of the methods are expensive and complex and some are cheap and simple technique. In order to produce 2618/SiCp MMC with maximum yield, two types of mixing i.e. liquid state and semi-solid state mixings have been introduced in the stir casting process with the support of process parameters from literatures. The process parameters utilized in each trial and results obtained in these processes are also highlighted. The density, hardness and tensile properties obtained in both the mixing processes are discussed. The study is carried out to assess the behaviour of AA2618/SiCp MMC for the fabrication of compressor blade.
同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3