Affiliation:
1. Departments of Pediatrics and
2. Immunobiology, Yale University, New Haven, Connecticut
Abstract
Endothelial cells (ECs) line the lumen of the entire vascular system and actively regulate blood flow; maintain blood fluidity; control water, solute, and macromolecular transfer between blood and tissue; and modulate circulating immune cell recruitment and activation. These vital functions, combined with the broad anatomic distribution of ECs, implicate them in all forms of critical illness. The present article discusses how ECs adapt and break down during the course of critical illness. We first review the biology of ECs, highlighting the vascular segmental differences and their specific roles in the maintenance of homeostasis. We then discuss how ECs acquire new functions to restore local and systemic homeostasis (activation) as well as how breakdowns in EC functions (dysfunction) contribute to local and systemic pathologic responses, with clinical correlations. Lastly, how these processes have been studied in critically ill children is discussed.
Publisher
American Academy of Pediatrics (AAP)
Subject
Pediatrics, Perinatology and Child Health
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献