Predicting Risk of Serious Bacterial Infections in Febrile Children in the Emergency Department

Author:

Irwin Adam D.1,Grant Alison2,Williams Rhian2,Kolamunnage-Dona Ruwanthi3,Drew Richard J.45,Paulus Stephane6,Jeffers Graham7,Williams Kim2,Breen Rachel8,Preston Jennifer7,Appelbe Duncan8,Chesters Christine9,Newland Paul9,Marzouk Omnia2,McNamara Paul S.7,Diggle Peter J.110,Carrol Enitan D.1

Affiliation:

1. Institute of Infection and Global Health,

2. Departments of Emergency,

3. Department of Biostatistics,

4. Department of Microbiology, Rotunda Hospital, Dublin, Ireland;

5. Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland; and

6. Infectious Disease, and

7. Institute of Translational Medicine, and

8. Clinical Trials Research Centre, University of Liverpool, Liverpool, United Kingdom;

9. Biochemistry, Alder Hey Children’s Hospital NHS Foundation Trust, Liverpool, United Kingdom;

10. Centre for Health Informatics, Computing, and Statistics, Lancaster University, Lancaster, United Kingdom

Abstract

BACKGROUND: Improving the diagnosis of serious bacterial infections (SBIs) in the children’s emergency department is a clinical priority. Early recognition reduces morbidity and mortality, and supporting clinicians in ruling out SBIs may limit unnecessary admissions and antibiotic use. METHODS: A prospective, diagnostic accuracy study of clinical and biomarker variables in the diagnosis of SBIs (pneumonia or other SBI) in febrile children <16 years old. A diagnostic model was derived by using multinomial logistic regression and internally validated. External validation of a published model was undertaken, followed by model updating and extension by the inclusion of procalcitonin and resistin. RESULTS: There were 1101 children studied, of whom 264 had an SBI. A diagnostic model discriminated well between pneumonia and no SBI (concordance statistic 0.84, 95% confidence interval 0.78–0.90) and between other SBIs and no SBI (0.77, 95% confidence interval 0.71–0.83) on internal validation. A published model discriminated well on external validation. Model updating yielded good calibration with good performance at both high-risk (positive likelihood ratios: 6.46 and 5.13 for pneumonia and other SBI, respectively) and low-risk (negative likelihood ratios: 0.16 and 0.13, respectively) thresholds. Extending the model with procalcitonin and resistin yielded improvements in discrimination. CONCLUSIONS: Diagnostic models discriminated well between pneumonia, other SBIs, and no SBI in febrile children in the emergency department. Improvements in the classification of nonevents have the potential to reduce unnecessary hospital admissions and improve antibiotic prescribing. The benefits of this improved risk prediction should be further evaluated in robust impact studies.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3