Magnetoencephalographic Patterns of Epileptiform Activity in Children With Regressive Autism Spectrum Disorders

Author:

Lewine Jeffrey D.1,Andrews Richard2,Chez Michael3,Patil Arun-Angelo4,Devinsky Orrin5,Smith Michael6,Kanner Andres6,Davis John T.1,Funke Michael1,Jones Greg1,Chong Brian1,Provencal Sherri1,Weisend Michael7,Lee Roland R.7,Orrison William W.,MD Jr,1

Affiliation:

1. From the Department of Radiology, University of Utah, Salt Lake City, Utah;

2. Ra Neurological, Omaha, Nebraska;

3. Pediatric Neurology, Lake Forest, Illinois; the

4. Department of Neurosurgery, University of Nebraska, Omaha, Nebraska; the

5. Department of Neurology, New York University, New York, New York; the

6. Epilepsy Program, Rush-Presbyterian St-Luke's Medical Center, Chicago, Illinois; and the

7. Neuroradiology Section, Veterans Administration Medical Center, Albuquerque, New Mexico.

Abstract

Background. One-third of children diagnosed with autism spectrum disorders (ASDs) are reported to have had normal early development followed by an autistic regression between the ages of 2 and 3 years. This clinical profile partly parallels that seen in Landau-Kleffner syndrome (LKS), an acquired language disorder (aphasia) believed to be caused by epileptiform activity. Given the additional observation that one-third of autistic children experience one or more seizures by adolescence, epileptiform activity may play a causal role in some cases of autism. Objective. To compare and contrast patterns of epileptiform activity in children with autistic regressions versus classic LKS to determine if there is neurobiological overlap between these conditions. It was hypothesized that many children with regressive ASDs would show epileptiform activity in a multifocal pattern that includes the same brain regions implicated in LKS. Design. Magnetoencephalography (MEG), a noninvasive method for identifying zones of abnormal brain electrophysiology, was used to evaluate patterns of epileptiform activity during stage III sleep in 6 children with classic LKS and 50 children with regressive ASDs with onset between 20 and 36 months of age (16 with autism and 34 with pervasive developmental disorder–not otherwise specified). Whereas 5 of the 6 children with LKS had been previously diagnosed with complex-partial seizures, a clinical seizure disorder had been diagnosed for only 15 of the 50 ASD children. However, all the children in this study had been reported to occasionally demonstrate unusual behaviors (eg, rapid blinking, holding of the hands to the ears, unprovoked crying episodes, and/or brief staring spells) which, if exhibited by a normal child, might be interpreted as indicative of a subclinical epileptiform condition. MEG data were compared with simultaneously recorded electroencephalography (EEG) data, and with data from previous 1-hour and/or 24-hour clinical EEG, when available. Multiple-dipole, spatiotemporal modeling was used to identify sites of origin and propagation for epileptiform transients. Results. The MEG of all children with LKS showed primary or secondary epileptiform involvement of the left intra/perisylvian region, with all but 1 child showing additional involvement of the right sylvian region. In all cases of LKS, independent epileptiform activity beyond the sylvian region was absent, although propagation of activity to frontal or parietal regions was seen occasionally. MEG identified epileptiform activity in 41 of the 50 (82%) children with ASDs. In contrast, simultaneous EEG revealed epileptiform activity in only 68%. When epileptiform activity was present in the ASDs, the same intra/perisylvian regions seen to be epileptiform in LKS were active in 85% of the cases. Whereas primary activity outside of the sylvian regions was not seen for any of the children with LKS, 75% of the ASD children with epileptiform activity demonstrated additional nonsylvian zones of independent epileptiform activity. Despite the multifocal nature of the epileptiform activity in the ASDs, neurosurgical intervention aimed at control has lead to a reduction of autistic features and improvement in language skills in 12 of 18 cases. Conclusions. This study demonstrates that there is a subset of children with ASDs who demonstrate clinically relevant epileptiform activity during slow-wave sleep, and that this activity may be present even in the absence of a clinical seizure disorder. MEG showed significantly greater sensitivity to this epileptiform activity than simultaneous EEG, 1-hour clinical EEG, and 24-hour clinical EEG. The multifocal epileptiform pattern identified by MEG in the ASDs typically includes the same perisylvian brain regions identified as abnormal in LKS. When epileptiform activity is present in the ASDs, therapeutic strategies (antiepileptic drugs, steroids, and even neurosurgery) aimed at its control can lead to a significant improvement in language and autistic features. autism, pervasive developmental disorder–not otherwise specified, epilepsy, magnetoencephalography, Landau-Kleffner syndrome.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3