Machine Learning Prediction Models for Neurodevelopmental Outcome After Preterm Birth: A Scoping Review and New Machine Learning Evaluation Framework

Author:

van Boven Menne R.12,Henke Celina E.23,Leemhuis Aleid G.12,Hoogendoorn Mark4,van Kaam Anton H.12,Königs Marsh2,Oosterlaan Jaap2

Affiliation:

1. aDepartments of Neonatology

2. bPediatrics, Follow-Me Program, Emma Neuroscience Group, and Amsterdam Reproduction and Development

3. cPsychosocial Department, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands

4. dFaculty of Science, Quantitative Data Analytics Group, Department Computer Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

Abstract

BACKGROUND AND OBJECTIVES Outcome prediction of preterm birth is important for neonatal care, yet prediction performance using conventional statistical models remains insufficient. Machine learning has a high potential for complex outcome prediction. In this scoping review, we provide an overview of the current applications of machine learning models in the prediction of neurodevelopmental outcomes in preterm infants, assess the quality of the developed models, and provide guidance for future application of machine learning models to predict neurodevelopmental outcomes of preterm infants. METHODS A systematic search was performed using PubMed. Studies were included if they reported on neurodevelopmental outcome prediction in preterm infants using predictors from the neonatal period and applying machine learning techniques. Data extraction and quality assessment were independently performed by 2 reviewers. RESULTS Fourteen studies were included, focusing mainly on very or extreme preterm infants, predicting neurodevelopmental outcome before age 3 years, and mostly assessing outcomes using the Bayley Scales of Infant Development. Predictors were most often based on MRI. The most prevalent machine learning techniques included linear regression and neural networks. None of the studies met all newly developed quality assessment criteria. Studies least prone to inflated performance showed promising results, with areas under the curve up to 0.86 for classification and R2 values up to 91% in continuous prediction. A limitation was that only 1 data source was used for the literature search. CONCLUSIONS Studies least prone to inflated prediction results are the most promising. The provided evaluation framework may contribute to improved quality of future machine learning models.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3