Rare Genetic Variants in Immune Genes and Neonatal Herpes Simplex Viral Infections

Author:

Cummings Lauren1,Tucker Megan1,Gibson Margaret2,Myers Angela3,Pastinen Tomi2,Johnston Jeffrey2,Farrow Emily2,Sampath Venkatesh1

Affiliation:

1. Divisions of Neonatology and

2. Center for Pediatric Genomic Medicine, Children’s Mercy Hospital, Kansas City, Missouri

3. Infectious Disease and

Abstract

Neonatal herpes simplex virus (HSV) infection is a devastating disease with high mortality, particularly when disseminated. Studies in adults and children suggest that susceptibility to herpes simplex encephalitis (HSE) may represent phenotypes for inborn errors in toll-like receptor 3 (TLR3) signaling. However, the genetic basis of susceptibility to neonatal HSV including disseminated disease remains unknown. To test the hypothesis that variants in known HSE-susceptible genes as well as genes mediating HSV immunity will be identified in neonatal HSV, we performed an unbiased exome sequencing study in 10 newborns with disseminated, HSE, and skin, eyes, and mouth disease. Determination of potential impact on function was determined by following American College of Medical Genetics and Genomics guidelines. We identified deleterious and potentially deleterious, rare variants in known HSE-related genes including a stop IRF3 variant (disseminated), nonsynonymous variants in TLR3 and TRAF3 (HSE), STAT1 (skin, eyes, and mouth), and DBR1 (disseminated) in our cohort. Novel and rare variants in other immunodeficiency genes or HSV-related immune genes GRB2, RAG2, PRF1, C6, C7, and MSR1 were found in 4 infants. The variant in GRB2, essential for T-lymphocyte cell responses to HSV, is a novel stop variant not found in public databases. In this pilot study, we identified deleterious or potentially deleterious variants in TLR3 pathway and genes that regulate anti-HSV immunity in neonates with HSV including disseminated disease. Larger, definitive studies incorporating functional analysis of genetic variants are required to validate these data and determine the role of immune genetic variants in neonatal HSV susceptibility.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3