Diagnosis and Treatment of Maple Syrup Disease: A Study of 36 Patients

Author:

Morton D. Holmes1,Strauss Kevin A.1,Robinson Donna L.1,Puffenberger Erik G.1,Kelley Richard I.2

Affiliation:

1. Clinic for Special Children, Strasburg Pennsylvania

2. Kennedy Krieger Institute and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract

Objective. To evaluate an approach to the diagnosis and treatment of maple syrup disease (MSD). Methods. Family histories and molecular testing for the Y393N mutation of the E1α subunit of the branched-chain α-ketoacid dehydrogenase allow us to identify infants who were at high risk for MSD. Amino acid concentrations were measured in blood specimens from these at-risk infants between 12 and 24 hours of age. An additional 18 infants with MSD were diagnosed between 4 and 16 days of age because of metabolic illness. A treatment protocol for MSD was designed to 1) inhibit endogenous protein catabolism, 2) sustain protein synthesis, 3) prevent deficiencies of essential amino acids, and 4) maintain normal serum osmolarity. Our protocol emphasizes the enhancement of protein anabolism and dietary correction of imbalances in plasma amino acids rather than removal of leucine by dialysis or hemofiltration. During acute illnesses, the rate of decrease of the plasma leucine level was monitored as an index of net protein synthesis. The treatment protocol for acute illnesses included the use of mannitol, furosemide, and hypertonic saline to maintain or reestablish normal serum sodium and extracellular osmolarity and thereby prevent or reverse life-threatening cerebral edema. Similar principles were followed for both sick and well outpatient management, especially during the first year, when careful matching of branched-chain amino acid intake with rapidly changing growth rates was necessary. Branched-chain ketoacid excretion was monitored frequently at home and branched-chain amino acid levels were measured within the time of a routine clinic visit, allowing immediate diagnosis and treatment of metabolic derangements. Results. 1) Eighteen neonates with MSD were identified in the high-risk group (n = 39) between 12 and 24 hours of age using amino acid analysis of plasma or whole blood collected on filter paper. The molar ratio of leucine to alanine in plasma ranged from 1.3 to 12.4, compared with a control range of 0.12 to 0.53. None of the infants identified before 3 days of age and managed by our treatment protocol became ill during the neonatal period, and 16 of the 18 were managed without hospitalization. 2) Using our treatment protocol, 18 additional infants who were biochemically intoxicated at the time of diagnosis recovered rapidly. In all infants, plasma leucine levels decreased to <400 μmol/L between 2 to 4 days after diagnosis. Rates of decrease of the plasma leucine level using a combination of enteral and parenteral nutrition were consistently higher than those reported for dialysis or hemoperfusion. Prevention of acute isoleucine, valine, and other plasma amino acid deficiencies by appropriate supplements allowed a sustained decrease of plasma leucine levels to the therapeutic range of 100 to 300 μmol/L, at which point dietary leucine was introduced. 3) Follow-up of the 36 infants over >219 patient years showed that, although common infections frequently cause loss of metabolic control, the overall rate of hospitalization after the neonatal period was only 0.56 days per patient per year of follow-up, and developmental outcomes were uniformly good. Four patients developed life-threatening cerebral edema as a consequence of metabolic intoxication induced by infection, but all recovered. These 4 patients each showed evidence that acutely decreased serum sodium concentration and decreased serum osmolarity were associated with rapid progression of cerebral edema during their acute illnesses. Conclusions. Classical MSD can be managed to allow a benign neonatal course, normal growth and development, and low hospitalization rates. However, neurologic function may deteriorate rapidly at any age because of metabolic intoxication provoked by common infections and injuries. Effective management of the complex pathophysiology of this biochemical disorder requires integrated management of general medical care and nutrition, as well as control of several variables that influence endogenous protein anabolism and catabolism, plasma amino acid concentrations, and serum osmolarity.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3