Feasibility of Tidal Volume-Guided Ventilation in Newborn Infants: A Randomized, Crossover Trial Using the Volume Guarantee Modality

Author:

Cheema Irfan Ulhaq1,Ahluwalia Jagjit Singh2

Affiliation:

1. From the Department of Paediatrics, University of Cambridge; and the

2. Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge, United Kingdom.

Abstract

Background and Aim. Volume guarantee (VG) is a new composite mode of pressure-limited ventilation, available on the Dräger Babylog 8000 ventilator, which allows the clinician to set a target mean tidal volume to be delivered while still maintaining control over peak airway pressures. This study aimed to investigate the feasibility and efficacy of this mode of ventilation in premature newborn infants with respiratory distress syndrome (RDS). Methods. Two groups of infants were studied: those receiving synchronized intermittent positive pressure ventilation (SIPPV) in early phase of RDS (group 1) and those in recovery phase of RDS being weaned from artificial ventilation through synchronized intermittent mandatory ventilation (SIMV; group 2). Both groups of infants were studied over a 4-hour period. Before the start of the study, the infants were either receiving SIPPV (group 1) or SIMV (group 2). Infants in group 1 were randomized to either continue on SIPPV for the first hour of the study or to receive SIPPV plus VG for the first hour. Subsequently, the 2 modes were used alternately for the remaining three 1-hour periods. Similarly, infants in group 2 were randomized to either continue on SIMV for the first hour of the study or to receive SIMV plus VG for the first hour. Data on ventilation parameters and transcutaneous carbon dioxide and oxygen were collected continuously. Results. Forty infants were studied, 20 in each group. The mean (standard error) gestational age was 27.9 (0.3) weeks; birth weight was 1064 (60) g. No adverse events were observed during the study. Fractional inspired oxygen during SIMV plus VG was 0.31 (0.3); during SIMV, 0.31 (0.3); during SIPPV plus VG, 0.41 (0.4); and during SIPPV, 0.40 (0.4). Transcutaneous carbon dioxide pressure during SIMV plus VG was 6.0 (2.2) kPa; during SIMV, 5.9 (2.2) kPa; during SIPPV plus VG, 6.4 (2.9) kPa; and during SIPPV, 6.4 (2.8) kPa. Transcutaneous partial pressure of oxygen during SIMV plus VG was 8.4 (8.7) kPa; during SIMV, 8.6 (8.8) kPa; during SIPPV plus VG, 7.6 (4.0) kPa; and during SIPPV, 7.7 (4.2) kPa. None of these differences was statistically significant. The mean (standard error) peak inspiratory pressure used during SIMV was 17.1 (3.4) cm of water; during SIMV plus VG, 15.0 (7.5) cm of water; during SIPPV plus VG, 17.1 (9.3) cm of water; and during SIPPV, 18.7 (8.3) cm of water. The mean airway pressure during SIMV plus VG was 6.5 (3.1) cm of water; during SIMV, 6.9 (2.8) cm of water; during SIPPV plus VG, 9.6 (4.5) cm of water; and during SIPPV, 9.8 (4.6) cm of water. Conclusion. VG seems to be a stable and feasible ventilation mode for neonatal patients and can achieve equivalent gas exchange using statistically significant lower peak airway pressures both during early and recovery stages of RDS. ventilation, airway pressure, volume guarantee, tidal volume.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3