Author:
Altman Denis I.,Perlman Jeffrey M.,Volpe Joseph J.,Powers William J.
Abstract
Objective. A better understanding of the developmental changes in brain energy metabolism that occur in human neonates is critically important for designing rational treatment strategies that ensure an adequate supply of nutrients to the brain and minimize deleterious side effects of therapeutic interventions in sick newborns.
Methods. Cerebral metabolic rate for oxygen (CMRO2) was measured with positron emission tomography in 11 sick newborns of different gestational ages.
Results. In five preterm infants, mean hemispheric CMRO2 was 0.06 to 0.54 mL 100 g-1 min-1. Two of these preterm infants with virtually absent CMRO2 (0.06 mL 100 g-1 min-1) had minimal or no evidence of parenchymal brain injury detected in the newborn period. In six term infants, mean hemispheric CMRO2 was 0.0 to 1.3 mL 100 g-1 min-1. Two with no neurological disease had mean hemispheric CMRO2 of 0.4 and 0.7 mL 100 g-1 min-1 and were normal at 6 and 7 months, respectively.
Conclusions. CMRO2 in four newborns who had minimal or no detectable brain injury was considerably below the threshold for brain viability in adults of 1.3 mL 100 g-1 min-1. This indicates that energy requirements in fetal and newborn brain are minimal or can be met by nonoxidative metabolism.
Publisher
American Academy of Pediatrics (AAP)
Subject
Pediatrics, Perinatology and Child Health
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献