The Triple Risk Hypotheses in Sudden Infant Death Syndrome

Author:

Guntheroth Warren G.1,Spiers Philip S.1

Affiliation:

1. From the Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington

Abstract

Sudden infant death syndrome (SIDS) victims were regarded as normal as a matter of definition (Beckwith 1970) until 1952 when Kinney and colleagues argued for elimination of the clause, “unexpected by history.” They argued that “not all SIDS victims were normal,” and referred to their hypothesis that SIDS results from brain abnormalities, which they postulated “to originate in utero and lead to sudden death during a vulnerable postnatal period.” Bergman (1970) argued that SIDS did not depend on any “single characteristic that ordains a infant for death,” but on an interaction of risk factors with variable probabilities. Wedgwood (1972) agreed and grouped risk factors into the first “triple risk hypothesis” consisting of general vulnerability, age-specific risks, and precipitating factors. Raring (1975), based on a bell-shaped curve of age of death (log-transformed), concluded that SIDS was a random process with multifactorial causation. Rognum and Saugstad (1993) developed a “fatal triangle” in 1993, with groupings similar to those of Wedgwood, but included mucosal immunity under a vulnerable developmental stage of the infant. Filiano and Kinney (1994) presented the best known triple risk hypothesis and emphasized prenatal injury of the brainstem. They added a qualifier, “in at least a subset of SIDS,” but, the National Institute of Child Health and Development SIDS Strategic Plan 2000, quoting Kinney’s work, states unequivocally that “SIDS is a developmental disorder. Its origins are during fetal development.” Except for the emphasis on prenatal origin, all 3 triple risk hypotheses are similar. Interest in the brainstem of SIDS victims began with Naeye’s 1976 report of astrogliosis in 50% of all victims. He concluded that these changes were caused by hypoxia and were not the cause of SIDS. He noted an absence of astrogliosis in some older SIDS victims, compatible with a single, terminal episode of hypoxia without previous hypoxic episodes, prenatal or postnatal. Kinney and colleagues (1983) reported gliosis in 22% of their SIDS victims. Subsequently, they instituted studies of neurotransmitter systems in the brainstem, particularly the muscarinic (1995) and serotenergic systems (2001). The major issue is when did the brainstem abnormalities, astrogliosis, or neurotransmitter changes occur and whether either is specific to SIDS. There is no published method known to us of determining the time of origin of these markers except that the injury causing astrogliosis must have occurred at least 4 days before death (Del Bigio and Becker, 1994). Because the changes in neurotransmitter systems found in the arcuate nucleus in SIDS victims were also found in the chronic controls with known hypoxia, specificity of these markers for SIDS has not been established. It seems likely that the “acute control” group of Kinney et al (1995) died too quickly to develop gliosis or severe depletion of the neurotransmitter systems. We can conclude that the acute controls had no previous episodes of severe hypoxia, unlike SIDS or their “chronic controls.” Although the average muscarinic cholinergic receptor level in the SIDS victim was significantly less than in the acute controls, the difference was only 27%, and only 21 of 41 SIDS victims had values below the mean of the acute controls. The study of the medullary serotonergic network by Kinney et al (2001) revealed greater reductions in the SIDS victims than in acute controls, but the questions of cause versus effect of the abnormalities, and whether they occurred prenatally or postnatally, remain unanswered. Hypoplasia of the arcuate nucleus was stated to occur in 5% of their SIDS cases by Kinney et al (2001), but this is a “primary developmental defect” according to Matturri et al (2002) with a larger series, many of whom were stillbirths. These cases should not be included under the rubric of SIDS, by definition. There are difficulties with Filiano and Kinney’s (1994) explanation of the age at death distribution of SIDS. They postulate that the period between 1 and 6 months represents an unstable time for virtually all physiologic systems. However, this period demonstrates much less instability than does the neonatal period, when most deaths from congenital defects and severe maternal anemia occur. We present data for infants born to mothers who were likely to have suffered severe anemia as a consequence of placenta previa, abruptio placentae, and excessive bleeding during pregnancy; these infants presumably are at increased risk of hypoxia and brainstem injury. The total neonatal mortality rate in these 3 groups of infants is 4 times greater than the respective postneonatal mortality, and in the postneonatal period the non-SIDS mortality rate is between 14 and 22 times greater than the postneonatal SIDS rate in these 3 groups. A preponderance of deaths in the neonatal period is also found for congenital anomalies, a category that logically should include infants who experienced prenatal hypoxia or ischemia; this distribution of age of death is very different from that for SIDS, which mostly spares the first month and peaks between 2 and 3 months of age. Finally, evidence inconsistent with prenatal injury as a frequent cause of SIDS comes from prospective studies of ventilatory control in neonates who subsequently died of SIDS; no significant respiratory abnormalities in these infants have been found (Waggener et al 1990; Schectman et al 1991). We conclude that none of the triple risk hypotheses presented so far have significantly improved our understanding of the cause of SIDS. Bergman’s and Raring’s concepts of multifactorial causation with interaction of risk factors with variable probabilities is less restrictive and more in keeping with the large number of demonstrated risk factors and their varying prevalence. If prenatal hypoxic damage of the brainstem occurred, it seems likely that the infant so afflicted would be at risk for SIDS, but it is even more likely that their death would occur in the neonatal period, as we have demonstrated in infants who have known maternal risk factors that involve severe anemia. This is in contrast to the delay until the postneonatal period of most SIDS deaths. A categorical statement that the origin of SIDS is prenatal is unwarranted by the evidence. Brainstem abnormalities have not been shown to cause SIDS, but are more likely a nonspecific effect of hypoxia.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

Reference34 articles.

1. Beckwith JB. Observations on the pathologic anatomy of the sudden infant death syndrome. In: Bergman AB, Beckwith JB, Ray CG, eds. Sudden Infant Death Syndrome. Seattle, WA: University of Washington Press; 1970:83

2. Kinney HC, Filiano JJ, Harper RM. The neuropathology of the sudden infant death syndrome. J Neuropathol Exper Neurol.1992;51:115–126

3. Bergman AB. Synthesis. In: Bergman AB, Beckwith JB, Ray CG, eds. Sudden Infant Death Syndrome. Seattle, WA: University of Washington Press; 1970:210–211

4. Wedgwood RJ. Review of USA experience. In: Camps FE, Carpenter RG, eds. Sudden and Unexpected Death in Infancy (Cot Deaths). Bristol, England: Wright; 1972:28

5. Raring RH. Crib Death: Scourge of Infants—Shame of Society. Hicksville, NY: Exposition Press; 1975:93–97

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3