Affiliation:
1. Departments of Pediatrics
2. Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
3. Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
4. Ordway Research Institute and New York State Department of Health, Albany, New York
Abstract
Objective. To explore pharmacokinetic factors underlying the poor bacteriologic eradication rate with a single 500-mg dose of ceftriaxone for streptococcal tonsillopharyngitis and to identify the minimum ceftriaxone dose required for effective treatment.
Methods. Population modeling techniques were applied to pharmacokinetic data derived from paired plasma and tonsil samples from 153 children to assess the contribution of pharmacokinetic variability to patients' responses to ceftriaxone. In addition, a Monte Carlo simulation was performed to determine (1) the amount of time that free ceftriaxone concentrations must exceed the minimum inhibitory concentration (MIC) of group A Streptococcus to achieve bacteriologic eradication and (2) the ceftriaxone dose required to maintain free drug concentrations above the target MIC for the requisite amount of time. Ceftriaxone MICs for group A Streptococcus were obtained from a previous trial, in which all MICs (n = 115) were ≤0.064 mg/L; 33.9% were susceptible at ≤0.016 mg/L, 66.4% were susceptible at 0.032 mg/L, and 1.7% were susceptible at 0.064 mg/L.
Results. Mean population pharmacokinetic parameters and their variances reflected substantial variability of clearance and half-life in the target population. Tonsillar ceftriaxone protein binding was 89.1%. The proportions of 1000 simulated patients with free ceftriaxone concentrations that exceeded MICs of 0.016 mg/L, 0.032 mg/L, and 0.064 mg/L at 24 hours were 71.7%, 65.4%, and 57.2%, respectively, and at 48 hours were 41.8%, 35.8%, and 28.6%, respectively. The amount of time that free ceftriaxone concentrations need to exceed MIC to achieve bacteriologic success was estimated to be 36 hours. Using this time criterion, two 500-mg doses of ceftriaxone separated by 18 hours should achieve a bacteriologic cure rate of ∼95%.
Conclusions. Pharmacokinetic variability and high ceftriaxone tonsillar protein binding explain the high microbiologic failure rate for a single 500-mg dose of ceftriaxone in group A streptococcal tonsillopharyngitis. Monte Carlo simulation suggests that a second dose administered 18 hours after the first will be required to achieve an acceptable bacteriologic cure rate.
Publisher
American Academy of Pediatrics (AAP)
Subject
Pediatrics, Perinatology, and Child Health
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献