Dopamine Versus Epinephrine for Cardiovascular Support in Low Birth Weight Infants: Analysis of Systemic Effects and Neonatal Clinical Outcomes

Author:

Valverde Eva1,Pellicer Adelina1,Madero Rosario2,Elorza Dolores1,Quero José1,Cabañas Fernando1

Affiliation:

1. Department of Neonatology

2. Biostatistics Unit, La Paz University Hospital, Madrid, Spain

Abstract

BACKGROUND. Early postnatal adaptation to transitional circulation in low birth weight infants frequently is associated with low blood pressure and decreased blood flow to organs. Catecholamines have been used widely as treatment, despite remarkably little empirical evidence on the effects of vasopressor/inotropic support on circulation and on clinically important outcomes in sick newborn infants. AIMS. To explore the effectiveness of low/moderate-dose dopamine and epinephrine in the treatment of early systemic hypotension in low birth weight infants, evaluate the frequency of adverse drug effects, and examine neonatal clinical outcomes of patients in relation to treatment. DESIGN/METHODS. Newborns of <1501-g birth weight or <32 weeks of gestational age, with a mean blood pressure lower than gestational age in the first 24 hours of life, were assigned randomly to receive dopamine (2.5, 5, 7.5, and 10 μg/kg per minute; n = 28) or epinephrine (0.125, 0.250, 0.375, and 0.5 μg/kg per minute; n = 32) at doses that were increased stepwise every 20 minutes until optimal mean blood pressure was attained and maintained (responders). If this treatment was unsuccessful (nonresponders), sequential rescue therapy was started, consisting first of the addition of the second study drug and then hydrocortisone. OUTCOME MEASURES. These included: (1) short-term changes (first 96 hours, only responders) in heart rate, mean blood pressure, acid-base status, lactate, glycemia, urine output, and fluid-carbohydrate debit; and (2) medium-term morbidity, enteral nutrition tolerance, gastrointestinal complications, severity of lung disease, patent ductus arteriosus, cerebral ultrasound diagnoses, retinopathy of prematurity, and mortality. RESULTS. Patients enrolled in this trial did not differ in birth weight or gestational age (1008 ± 286 g and 28.3 ± 2.3 weeks in the dopamine group; 944 ± 281 g and 27.7 ± 2.4 weeks in the epinephrine group). Other main antenatal variables were also comparable. However, responders and nonresponders differed significantly with respect to the need for cardiorespiratory resuscitation at birth (3% vs 23%), Critical Risk Index for Babies score (3.8 ± 3 vs 7 ± 5), and premature rupture of membranes >24 hours (39.5% vs 13.6%), respectively. No differences were found in the rate of treatment failure (dopamine: 36%; epinephrine: 37%) or need for rescue therapy according to treatment allocation. Groups did not differ in age at initiation of therapy (dopamine: 5.3 ± 3.9 hours; epinephrine: 5.2 ± 3.3 hours), but withdrawal was significantly later in the dopamine group. For short-term changes, mean blood pressure showed a significant increase from baseline throughout the first 96 hours with no differences between groups. However, epinephrine produced a greater increase in heart rate than dopamine. After treatment began, epinephrine patients showed higher plasma lactate (first 36 hours) and lower bicarbonate and base excess (first 6 hours) and received more bicarbonate. Patients in the epinephrine group also had higher glycemia (first 24 hours) and needed insulin therapy more often. Groups did not differ in urine output or fluid-carbohydrate supply during the first 96 hours. For medium-term morbidity, there were no differences in neonatal clinical outcomes in responders. However, significant differences were found in the incidence of patent ductus arteriosus, bronchopulmonary dysplasia, need for high-frequency ventilation, occurrence of necrotizing enterocolitis, and death between responders and nonresponders. CONCLUSIONS. Low/moderate-dose epinephrine is as effective as low/moderate-dose dopamine for the treatment of hypotension in low birth weight infants, although it is associated with more transitory adverse effects.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology, and Child Health

Reference41 articles.

1. Kluckow M, Evans N. Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch Dis Child Fetal Neonatal Ed. 2000;82:F182–F187

2. Evans N, Kluckow M, Simmons M, Osborn D. Which to measure, systemic or organ blood flow? Middle cerebral artery and superior vena cava flow in very preterm infants. Arch Dis Child Fetal Neonatal ed. 2002;87:F181–F184

3. Zubrow AB, Hulman S, Krushner H, Falkner B. Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicenter study. J Perinatol. 1995;15:470–479

4. Al-Aweel I, Pursley DM, Rubin LP, Shah B, Weisberger S, Richardson DK. Variations in prevalence of hypotension, hypertension, and vasopressor use in NICUs. J Perinatol. 2001;21:272–278

5. Walker AM. Developmental aspects of cardiac physiology and morphology. In: Lipshitz J, Maloney J, Nimrod C, Carson G, eds. Perinatal Development of the Heart and Lung. Perinatology Press; 1987:73–82

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3