Corticospinal Dysgenesis and Upper-Limb Deficits in Congenital Hemiplegia: A Diffusion Tensor Imaging Study

Author:

Bleyenheuft Yannick1,Grandin Cécile B.2,Cosnard Guy2,Olivier Etienne3,Thonnard Jean-Louis1

Affiliation:

1. Physical Medicine and Rehabilitation Unit

2. Radiology Department

3. Laboratory of Neurophysiology, School of Medicine, Université Catholique de Louvain, Brussels, Belgium

Abstract

OBJECTIVES. Precision grasping critically relies on the integrity of the corticospinal tract as evidenced in congenital hemiplegia by the correlation found between corticospinal dysgenesis and hand-movement deficits. Therefore, corticospinal dysgenesis could be used to anticipate upper-limb deficits in young infants with congenital hemiplegia. However, most studies have quantified corticospinal dysgenesis by measuring the cross-sectional area of cerebral peduncles on T1 MRI, a measure biased by other structures present in the peduncles. The purpose of this study was to evaluate the extent to which this may have hampered the conclusions of previous studies. We also aimed to investigate the relationship between upper-limb deficits and a more accurate measure of corticospinal dysgenesis to provide a tool for anticipating upper-limb deficits in infants with congenital hemiplegia. METHODS. To address this issue, we measured corticospinal tract areas in 12 patients with congenital hemiplegia and 12 matched control subjects by using the diffusion tensor imaging technique. Corticospinal dysgenesis was quantified by computing a symmetry index between the area of the contralateral and ipsilateral corticospinal tracts. This value was then compared with that resulting from the conventional MRI method. RESULTS. The symmetry indexes gathered with these 2 methods were highly correlated, although the diffusion tensor imaging symmetry indexes were significantly smaller. This indicates that, in patients with congenital hemiplegia, the conventional MRI measurement has led to a systematic underestimate of corticospinal dysgenesis. These 2 estimates of corticospinal dysgenesis were also correlated with upper-limb impairments and disabilities. Although the symmetry index computed from peduncle measurements was correlated solely with deficits in stereognosis, the diffusion tensor imaging index correlated with stereognosis, digital and manual dexterities, and ABILHAND-Kids, a measure of manual ability in daily life activities. CONCLUSIONS. The diffusion tensor imaging symmetry index provides a useful prognostic tool for anticipating upper-limb deficits and their consequences in daily life activities.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3