Prediction Models for Evaluation of Total-Body Bone Mass With Dual-Energy X-Ray Absorptiometry Among Children and Adolescents

Author:

Horlick Mary12,Wang Jack1,Pierson Richard N.1,Thornton John C.1

Affiliation:

1. Body Composition Unit, St Luke's-Roosevelt Hospital Center, New York, New York

2. Children's Hospital of New York Presbyterian, Columbia University, New York, New York

Abstract

Objective. The performance of dual-energy x-ray absorptiometry (DXA) in identifying children with decreased bone mass is increasing, but there is no consensus regarding how to interpret the results. The World Health Organization diagnostic categories for normal, osteopenia, and osteoporosis, based on T scores, are not applicable to children and adolescents who have not yet reached peak bone mass. The pediatric reference standards provided by DXA manufacturers have been questioned. Bone mineral density determined with DXA is “areal” density (a 2-dimensional measurement of a 3-dimensional structure), and its misleading nature among growing and maturing children is well recognized. Few published pediatric reference values for bone mineral density measured with DXA include factors that are known to affect the results besides age and gender. Our objective was to develop an algorithm for the evaluation of bone mass among children that included known determinants of bone mass and of its measurement with DXA. Methods. Height, weight, pubertal status, and total-body bone mineral content, total-body bone area, and total-body bone mineral density measured with DXA were recorded for an ethnically diverse group of healthy pediatric subjects (n = 1218; age: 6–18 years). Prediction models for bone measurements were developed and validated with healthy pediatric subjects and then applied to children with medical disorders. Results. There was a significant gender effect, as well as an interaction between gender and ethnicity. Separate models were developed for log total-body bone mineral content, log total-body bone area, and 1/total-body bone mineral density for girls and boys. The variability explained for each measurement increased from level 1, including age and ethnicity (76–86%), to level 2, including age, ethnicity, height, and weight (84–97%), and to level 3, including age, ethnicity, height, weight, and bone area (89–99%). Pubertal stage was an additional significant predictor of bone measurements but increased the explained variability by only 0.1% with height and weight in the models. The values predicted with each model were not different from measured values for the validation group but were different for patients with medical disorders, with different patterns according to the diagnoses. Conclusions. These models, including known determinants of bone mass and of bone measurements with DXA, provide an evaluation of pediatric bone mass that proceeds in steps from level 1 to level 3. The outcomes were different for patients at risk for compromised bone mass, compared with healthy children, with specific patterns for each medical disorder. We propose an algorithm for evaluation of bone measurements that follows levels 1 to 3. Our findings suggest that application of this algorithm to well-characterized groups of pediatric patients could identify disease-specific features of DXA results. We recommend this approach as a basis for consensus regarding the clinical evaluation of pediatric bone mass, and we suggest that it could lead to meaningful classification of pediatric bone disorders, investigation of pathophysiologic processes, and development of appropriate interventions.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3