Magnetic Resonance Imaging of the Brain in Very Preterm Infants: Visualization of the Germinal Matrix, Early Myelination, and Cortical Folding

Author:

Battin Malcolm R.1,Maalouf Elia F.1,Counsell Serena J.,DCR Bsc,2,Herlihy Amy H.2,Rutherford Mary A.12,Azzopardi Denis1,Edwards A. David1

Affiliation:

1. From the Department of Pediatrics, and the

2. Robert Steiner Magnetic Resonance Unit, Imperial College School of Medicine, Hammersmith Hospital, London, England.

Abstract

Objective. To investigate preterm infants, we have installed in our neonatal intensive care unit a dedicated magnetic resonance (MR) imaging system which was specifically designed for neonatal use. The aim of this study was to describe the MR appearances of the brain in preterm infants who were first scanned between 25 and 32 weeks gestational age (GA) and to outline changes to the brains of these infants between their first scan and term. Methods. Preterm infants of 25 to 32 weeks GA were imaged using the 1T neonatal MR system (Oxford Magnet Technology, Eyensham, Oxfordshire, England/Picker International, Cleveland, OH). The scanning protocol included T1-weighted conventional spin echo (repetition time [TR], 600; echo time, 20 ms), inversion recovery fast spin echo (TR, 3530; effective echo time, 30; inversion time, 950 ms), and T2-weighted fast spin echo (TR, 3500; effective echo time, 208 ms) sequences. Results. Seventeen infants of median 28 weeks GA (range, 24 to 31 weeks) at birth were imaged a total of 53 times between birth and term. The median number of images per infant was two (range, 1 to 9). In infants of <30 weeks GA, the germinal matrix was visualized at the margins of the lateral ventricles. It had a short T1 and short T2 and the bulk of it involuted at between 30 and 32 weeks GA. The white matter had a relatively homogeneous low signal except for bands of altered signal (probably originating from regions containing radial glia and migrating cells) which were most apparent anterolateral and posterolateral to the lateral ventricles. Myelination was seen in the posterior brainstem, cerebellum, and region of the ventrolateral nuclei of the thalamus. Infants had very little cortical folding at 25 weeks GA but this developed later in an orderly fashion. Conclusion. The neonatal MR system allowed extremely preterm infants to be studied safely with MR imaging. The images acquired demonstrated the germinal matrix, early myelination, and early cortical folding. Evolution of these features was demonstrated with serial studies.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

Reference15 articles.

1. Magnetic resonance imaging of the brain of very premature infants within a neonatal intensive care unit.;Battin;Lancet,1997

2. Normal gyration and sulcation in preterm and term neonates: appearances on MR images.;van der Knapp;Radiology,1996

3. In vivo MR study of brain maturation in normal fetuses.;Girard;Am J Neuroradiol.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3