Abnormal Cerebral Structure Is Present at Term in Premature Infants

Author:

Inder Terrie E.123,Warfield Simon K.4,Wang Hong2,Hüppi Petra S.35,Volpe Joseph J.3

Affiliation:

1. Murdoch Children’s Research Institute, Royal Women’s and Royal Children’s Hospitals, University of Melbourne, Melbourne, Australia

2. Howard Florey Institute, University of Melbourne, Melbourne, Australia

3. Department of Neurology, Children’s Hospital, Harvard Medical School, Boston, Massachusetts

4. Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts

5. Department of Pediatrics, University of Geneva, Geneva, Switzerland

Abstract

Background. Long-term studies of the outcome of very prematurely born infants have clearly documented that the majority of such infants have significant motor, cognitive, and behavioral deficits. However, there is a limited understanding of the nature of the cerebral abnormality underlying these adverse neurologic outcomes. Aim. The overall aim of this study was to define quantitatively the alterations in cerebral tissue volumes at term equivalent in a large longitudinal cohort study of very low birth weight premature infants in comparison to term-born infants by using advanced volumetric 3-dimensional magnetic resonance imaging (MRI) techniques. We also aimed to define any relationship of such perinatal lesions as white matter (WM) injury or other potentially adverse factors to the quantitative structural alterations. Additionally, we wished to identify the relationship of the structural alterations to short-term neurodevelopmental outcome. Methods. From November 1998 to December 2000, 119 consecutive premature infants admitted to the neonatal intensive care units at Christchurch Women’s Hospital (Christchurch, New Zealand) and the Royal Women’s Hospital (Melbourne, Australia) were recruited (88% of eligible) after informed parental consent to undergo an MRI scan at term equivalent. Twenty-one term-born infants across both sites were recruited also. Postacquisition advanced 3-dimensional tissue segmentation with 3-dimensional reconstruction was undertaken to estimate volumes of cerebral tissues: gray matter (GM; cortical and deep nuclear structures), WM (myelinated and unmyelinated), and cerebrospinal fluid (CSF). Results. In comparison to the term-born infants, the premature infants at term demonstrated prominent reductions in cerebral cortical GM volume (premature infants [mean ± SD]: 178 ± 41 mL; term infants: 227 ± 26 mL) and in deep nuclear GM volume (premature infants: 10.8 ± 4.1 mL; term infants: 13.8 ± 5.2 mL) and an increase in CSF volume (premature infants: 45.6 ± 22.1 mL; term infants: 28.9 ± 16 mL). The major predictors of altered cerebral volumes were gestational age at birth and the presence of cerebral WM injury. Infants with significantly reduced cortical GM and deep nuclear GM volumes and increased CSF volume volumes exhibited moderate to severe neurodevelopmental disability at 1 year of age. Conclusions. This MRI study of prematurely born infants further defines the nature of quantitative cerebral structural abnormalities present as early as term equivalent. The abnormalities particularly involve cerebral neuronal regions including both cortex and deep nuclear structures. The pattern of cerebral alterations is related most significantly to the degree of immaturity at birth and to concomitant WM injury. The alterations are followed by abnormal short-term neurodevelopmental outcome.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology, and Child Health

Cited by 754 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3