Renal Bicarbonate Excretion in Extremely Low Birth Weight Infants

Author:

Ramiro-Tolentino Susan B.1,Markarian Katherine1,Kleinman Leonard I.1

Affiliation:

1. Department of Pediatrics (Division of Neonatal Medicine), State University of New York at Stony Brook, Stony Brook, New York

Abstract

Objective. To test the hypothesis that due to the immaturity of their kidneys extremely low birth weight infants lose large amounts of bicarbonate in their urine. Methods. Urine and blood samples collected every 8 to 12 hours for the first 4 days of life from 22 preterm infants 23 to 29 weeks' gestation weighing 540 to 982 g at birth were prospectively studied. Results. As described previously, three phases of fluid homeostasis were identified. The first phase (prediuresis) was a period of low urine output followed by a period of spontaneous diuresis/natriuresis (diuretic phase) and then by a phase when urine output varied according to fluid intake (postdiuresis). Sodium, potassium chloride, and bicarbonate excretion rates and bicarbonate balance (bicarbonate or acetate infused minus bicarbonate excreted) were calculated for each of the three phases. Urinary excretion of sodium, potassium, chloride, and bicarbonate increased from the prediuretic to the diuretic phase and decreased from the diuretic to the postdiuretic phase. During the diuretic phase 88% of renal sodium excretion was accompanied by excretion of chloride. Bicarbonate balance was positive in all three fluid phases. Cumulative renal bicarbonate loss over the first 4 days of life was 1.9 ± 0.5 meq/kg (SD) and the cumulative bicarbonate balance was +4.4 ± 4.1 meq/kg (SD). The glomerular filtration rate, filtered load of bicarbonate, and absolute tubular reabsorption of bicarbonate significantly increased from the prediuretic to the diuretic phase, while fractional reabsorption of sodium and chloride decreased between these two phases. The fractional reabsorption of bicarbonate did not change from prediuresis to diuresis, but increased from diuresis to postdiuresis and consequently from prediuresis to postdiuresis. Conclusions. Contrary to our original hypothesis, the total renal bicarbonate excretion of extremely low birth weight infants in the first 4 days of life is low and the net bicarbonate balance is positive. The anion predominantly accompanying the excretion of sodium in all three phases is chloride and not bicarbonate. Bicarbonate excretion appears to be independent of sodium excretion during these phases. The increase in renal tubular bicarbonate reabsorption during the first week of life may be associated with extracellular volume contraction.

Publisher

American Academy of Pediatrics (AAP)

Subject

Pediatrics, Perinatology and Child Health

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pitfalls in the diagnosis and management of acid–base disorders in humans: a laboratory medicine perspective;Journal of Clinical Pathology;2024-07-18

2. Renal Tubular Acidosis in the Neonate;NeoReviews;2024-02-01

3. Fluid, Electrolyte, and Acid-Base Balance;Avery's Diseases of the Newborn;2024

4. Early Chloride Intake Does Not Parallel That of Sodium in Extremely-Low-Birth-Weight Infants and May Impair Neonatal Outcomes;Journal of Pediatric Gastroenterology & Nutrition;2012-05

5. Acid–Base Homeostasis in the Fetus and Newborn;Nephrology and Fluid/Electrolyte Physiology: Neonatology Questions and Controversies;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3