Modeling of Changes in Creatine Kinase after HMG-CoA Reductase Inhibitor Prescription

Author:

Kim Hun-SungORCID,Min JiyoungORCID,Shinn JiwonORCID,Hong Oak-KeeORCID,Son Jang-WonORCID,Lee Seong-SuORCID,Kim Sung-RaeORCID,Yoo Soon JibORCID

Abstract

Background: Statin-associated muscle symptoms are one of the side effects that physicians should consider when prescribing statins. In this study, creatine kinase (CK) levels were measured following statin prescription, and various factors affecting the CK levels were determined using machine learning.Methods: Changes in the CK were observed every 3 months for a 12-month period in patients who received statins for the first time at Seoul St. Mary's Hospital. For each visit, we developed four basic models based on changes in the CK levels. Extreme gradient boosting, a scalable end-to-end tree boosting algorithm, which employs a decision-tree-based ensemble machine learning algorithm, was used for the prediction of changes in the CK.Results: A total of 23,860 patients were included. Among them, 19 patients (0.08%) had increased CK levels of 2,000 IU·L<sup>−1</sup> or more 3 months after statin prescription, and 65 patients (0.27%) exhibited CK levels of over 2,000 IU·L<sup>−1</sup> at least once during the 12-month study period. The area under the receiver operator characteristic of each model for each visit was 0.709–0.769, and the accuracy was 0.700–0.803. In each of the models, the variables that had the strongest influence on changes in the CK were sex and previous CK value.Conclusions: Through machine learning, factors influencing changes in the CK were identified. These results will provide the basis for future research, through which the optimal parameters of the CK prediction model can be found and the model can be used in clinical applications.

Funder

National Research Foundation of Korea

Ministry of Science and ICT

Publisher

Korean Society of Cardiovascular Disease Prevention

Subject

General Arts and Humanities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3