1. [1] E. Brochu, V. Cora, and N. de Freitas: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modelling and hierarchical reinforcement learning, Tech. Rep., University of British Columbia, UBC TR-2009-023, 2010.
2. [2] A. Zilinskas: A review of statistical models for global optimization, J. Glob. Optim., Vol. 2, pp. 145-153, 1992.
3. [3] N. Srinivas, A. Krause, S.M. Kakade, and M.W. Seeger: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting, IEEE Trans. Information Theory, Vol. 58, No. 5, pp. 3250-3265, 2012.
4. [4] D.R. Jones, M. Schonlau, and W.J. Welch: Efficient global optimization of expensive black-box functions, J. Global Optim., Vol. 13, No. 4, pp. 455-492, 1998.
5. [5] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans: Automatic gait optimization with Gaussian process regression, Proc. Int. Joint Conf. Artificial Intell., Hyderabad, India, pp. 944-949, 2007.