RESEARCH THE CONSTRUCTION OF A TRANSPARENT OBJECT RECOGNITION MODEL USING COMPUTER VISION AND ARTIFICIAL INTELLIGENCE

Author:

,Thi Hong Ha DIEN

Abstract

The article focuses on researching the construction of a transparent object (glass) recognition model based on the application of computer vision techniques and artificial intelligence models. Stereo Matching image processing techniques have been used to build a raw depth image from a Stereo Camera. The goal is to reconstruct the depth image, recover in-depth information, and generate a complete depth image to effectively identify the position of transparent objects in reality. Additionally, the research involves designing a software interface for observing depth images, point clouds, and controlling the robotic arm for object grasping in threedimensional space. The following results were obtained: The quality of the depth image reconstruction model is improved compared to the ClearGrasp model when evaluated on ClearGrasp datasets; Determine orientations on how to improve models and algorithms for reconstructing depth images in a more quantitative manner. The success rate of picking up a glass cup is over 90% in cases of objects on the floor; This rate reaches over 70% when objects are placed at different heights. The software interface displays detailed information and facilitates communication, controlling depth images, point clouds, and position graphs (x, y, z). At the same time, it is easy to interact and convenient during the experiment

Publisher

Vinh University

Reference62 articles.

1. [1] I. Lysenkov, V. Eruhimov and G. Bradski, "Recognition and Pose Estimation of Rigid

2. Transparent Objects with a Kinect Sensor," Conference: Robotics: Science and

3. Systems 2012, pp. 273-280, 2012. DOI: 10.15607/RSS.2012.VIII.035

4. [2] C. Guo-Hua, W. Jun-Yi and Z. Ai-Jun, "Transparent object detection and location

5. based on RGB-D camera," Journal of Physics: Conference Series, vol. 1183 (1),

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3