Author:
Xuan Giap DUONG, ,Ha Chau Loan NGO,
Abstract
In this paper, we introduce the concept of partially limit of double arrays of real numbers and prove that the lower limit and upper limit defined in [3], are minimum and maximum of partially limits, respectively. Therefore, we apply to establish strong law of large numbers for double arrays of random variables with respect to capacities. This result extends [6, Theorem 1] to the case of double arrays of random variables.
Reference10 articles.
1. [1] G. Choquet, Theory of capacities, Annales de l'institut Fourier (Grenoble), 5, 1954, 131-292.
2. [2] A. Dempster, Upper and lower probabilities induced by a multivalued mapping, The Annals of Mathematical Statistics, 38, 1967, 325-339.
3. [3] Dương Xuân Giáp, Ngô Hà Châu Loan, Bùi Đình Thắng và Tôn Nữ Minh Ngọc, Giới hạn dưới, giới hạn trên của mảng các biến ngẫu nhiên và ứng dụng, Tạp chí khoa học Đại học Sài Gòn, 22, 2016, 73-88.
4. [4] N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrscheinlichkeitstheorieverw.Gebiete, 55, 1981, 119-122.
5. [5] P. J. Huber and V. Strassen, Minimax tests and the Neyman-Pearson lemma for capacities, The Annals of Statistics, 1, 1973, 251-263.