Emission rates, ALOHA simulation and Box-Behnken design of accidental releases in butyl acrylate tank - case study

Author:

Saloglu Didem1ORCID,Dertli Halil2ORCID,Mohammadi Mandana3ORCID,Mohammadi Mitra4ORCID

Affiliation:

1. Istanbul Technical University , Disaster Management Institute, Disaster and Emergency Management Department , , Istanbul , Turkey

2. Istanbul Technical University , Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department , , Istanbul , Turkey

3. Department of Statistics , Ferdowsi University of Mashhad , Iran

4. Department of Environmental Science , Kheradgarayn Motahar Institute of Higher Education , Mashhad , Iran

Abstract

Abstract The leakage of hazardous compounds in chemical industries has always been one of the factors threatening workers, plants, and the environment. Among them, butyl acrylate is one of the most harmful materials that are widely used in chemical plants. In the present study, a butyl acrylate tank located in a real tank farm in Kocaeli-Turkey was analyzed for the examination of emissions and trinitrotoluene (TNT) equivalent explosion model of the vapor cloud. Areal Locations of Hazardous Atmospheres (ALOHA) program was used to define threat zones of butyl acrylate leakage based on different scenarios, such as a leakage from the tank without fire, burning as a jet fire, and also burning as a fireball during Boiling Liquid Expanding Vapor Explosion (BLEVE). In addition, since the most important parameters that enhance the effects of explosion and the spread of volatile organic compounds (VOCs) are wind speed, filling ratio of the tanks, and temperature, the interaction of these parameters on the threat zones and the highest threat zones of explosions were investigated using the Box-Behnken experimental design and one-way Analysis of Variance (ANOVA), respectively. As butyl acrylate, one of the most dangerous chemicals for industrial facilities, and its explosion effects have not been studied so far, it can be safely mentioned that this paper representing the first study in the literature is highly original and novel.

Publisher

Stowarzyszenie Menedzerow Jakosci i Produkcji

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3